Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2485 Janelia Publications

Showing 11-20 of 2485 results
06/01/09 | [Analysis on acupuncture literature in Science Citation Index (SCI) periodicals in 2007].
Gao L, Tian L, Guo Y
Zhongguo Zhen Jiu = Chinese Acupuncture & Moxibustion. 2009 Jun;29(6):504-7. doi: 10.1364/AO.50.001792

To grasp the international developing tendency of acupuncture research and provide some references for promoting acupuncture and moxibustion internationalization process, the articles about acupuncture in Science Citation Index (SCI) periodicals in 2007 were retrieved by adopting the retrieval tactics on line in combination with database searching. Results indicate that 257 articles about acupuncture had been retrived from the SCI Web databases. These articles were published in 125 journals respectively, most of which were Euramerican journals. Among these journals, the impact factor of the Journal of the American Medical Association (JAMA), 25. 547, is the highest one. It is shown that the impact factors of the SCI periodicals, in which acupuncture articles embodied are increased, the quality of these articles are improved obviously and the types of the articles are various in 2007, but there is obvious difference in the results of these studies due to the difference of experimental methods, the subjects of these experiments and acupuncture manipulations. Therefore, standardization of many problems arising from the researches on acupuncture is extremely imminent.

View Publication Page
01/12/22 | [Dilemma and breakthrough of acupuncture-moxibustion department under the situation of rapid expansion of hospital].
Chen S, Pan W, Jing X, Fang J
Zhongguo Zhen Jiu. 2022 Jan 12;42(1):8-12. doi: 10.13703/j.0255-2930.20201121-0002

Under the situation of the rapid expansion of hospital, the dilemma of acupuncture-moxibustion department, as well as the relevant solutions are explored. The main reasons for the shrinking situation of the service in acupuncture-moxibustion department include: the disease-based department division trends to divert many diseases suitably treated in acupuncture-moxibustion department; the environment pursuing economic benefits restricts the development of acupuncture-moxibustion therapy characterized by "simple and low-cost operation". There are three important approaches for breaking through the dilemma of acupuncture and moxibustion therapy. First, modifying the traditional service mode as waiting for patients in acupuncture-moxibustion department and promoting acupuncture and moxibustion technology to be adopted in other departments rather than limited only in acupuncture-moxibustion department. Second, increasing the charges of acupuncture and moxibustion technology rationally. Third, positioning accurately the role of acupuncture and moxibustion technology in health services based on its own characteristics and advantages and promoting it in community medical institutions. All of these solutions require the guidance of supporting policies.

View Publication Page
09/01/09 | A 3D digital atlas of C. elegans and its application to single-cell analyses.
Long F, Peng H, Liu X, Kim SK, Myers E
Nature Methods. 2009 Sep;6:667-72. doi: 10.1007/s12021-010-9090-x

We built a digital nuclear atlas of the newly hatched, first larval stage (L1) of the wild-type hermaphrodite of Caenorhabditis elegans at single-cell resolution from confocal image stacks of 15 individual worms. The atlas quantifies the stereotypy of nuclear locations and provides other statistics on the spatial patterns of the 357 nuclei that could be faithfully segmented and annotated out of the 558 present at this developmental stage. We then developed an automated approach to assign cell names to each nucleus in a three-dimensional image of an L1 worm. We achieved 86% accuracy in identifying the 357 nuclei automatically. This computational method will allow high-throughput single-cell analyses of the post-embryonic worm, such as gene expression analysis, or ablation or stimulation of cells under computer control in a high-throughput functional screen.

View Publication Page
10/01/12 | A battery-free multichannel digital neural/EMG telemetry system for flying insects.
Thomas SJ, Harrison RR, Leonardo A, Reynolds MS
IEEE Transactions on Biomedical Circuits and Systems. 2012 Oct;6(5):424-36. doi: 10.1109/TBCAS.2012.2222881

This paper presents a digital neural/EMG telemetry system small enough and lightweight enough to permit recording from insects in flight. It has a measured flight package mass of only 38 mg. This system includes a single-chip telemetry integrated circuit (IC) employing RF power harvesting for battery-free operation, with communication via modulated backscatter in the UHF (902-928 MHz) band. An on-chip 11-bit ADC digitizes 10 neural channels with a sampling rate of 26.1 kSps and 4 EMG channels at 1.63 kSps, and telemeters this data wirelessly to a base station. The companion base station transceiver includes an RF transmitter of +36 dBm (4 W) output power to wirelessly power the telemetry IC, and a digital receiver with a sensitivity of -70 dBm for 10⁻⁵ BER at 5.0 Mbps to receive the data stream from the telemetry IC. The telemetry chip was fabricated in a commercial 0.35 μ m 4M1P (4 metal, 1 poly) CMOS process. The die measures 2.36 × 1.88 mm, is 250 μm thick, and is wire bonded into a flex circuit assembly measuring 4.6 × 6.8 mm.

View Publication Page
04/22/24 | A Bayesian Solution to Count the Number of Molecules within a Diffraction Limited Spot
Alexander Hillsley , Johannes Stein , Paul W. Tillberg , David L. Stern , Jan Funke
bioRxiv. 2024 Apr 22:. doi: 10.1101/2024.04.18.590066

We address the problem of inferring the number of independently blinking fluorescent light emitters, when only their combined intensity contributions can be observed at each timepoint. This problem occurs regularly in light microscopy of objects that are smaller than the diffraction limit, where one wishes to count the number of fluorescently labelled subunits. Our proposed solution directly models the photo-physics of the system, as well as the blinking kinetics of the fluorescent emitters as a fully differentiable hidden Markov model. Given a trace of intensity over time, our model jointly estimates the parameters of the intensity distribution per emitter, their blinking rates, as well as a posterior distribution of the total number of fluorescent emitters. We show that our model is consistently more accurate and increases the range of countable subunits by a factor of two compared to current state-of-the-art methods, which count based on autocorrelation and blinking frequency, Further-more, we demonstrate that our model can be used to investigate the effect of blinking kinetics on counting ability, and therefore can inform experimental conditions that will maximize counting accuracy.

View Publication Page
10/18/19 | A bidirectional network for appetite control in larval zebrafish.
Wee CL, Song EY, Johnson RE, Ailani D, Randlett O, Kim J, Nikitchenko M, Bahl A, Yang C, Ahrens MB, Kawakami K, Engert F, Kunes S
Elife. 2019 Oct 18;8:. doi: 10.7554/eLife.43775

Medial and lateral hypothalamic loci are known to suppress and enhance appetite, respectively, but the dynamics and functional significance of their interaction have yet to be explored. Here we report that, in larval zebrafish, primarily serotonergic neurons of the ventromedial caudal hypothalamus (cH) become increasingly active during food deprivation, whereas activity in the lateral hypothalamus (LH) is reduced. Exposure to food sensory and consummatory cues reverses the activity patterns of these two nuclei, consistent with their representation of opposing internal hunger states. Baseline activity is restored as food-deprived animals return to satiety via voracious feeding. The antagonistic relationship and functional importance of cH and LH activity patterns were confirmed by targeted stimulation and ablation of cH neurons. Collectively, the data allow us to propose a model in which these hypothalamic nuclei regulate different phases of hunger and satiety and coordinate energy balance via antagonistic control of distinct behavioral outputs.

View Publication Page
04/11/24 | A blue-shifted genetically encoded Ca2+ indicator with enhanced two-photon absorption
Abhi Aggarwal , Smrithi Sunil , Imane Bendifallah , Michael Moon , Mikhail Drobizhev , Landon Zarowny , Jihong Zheng , Sheng-Yi Wu , Alexander W. Lohman , Alison G. Tebo , Valentina Emiliani , Kaspar Podgorski , Yi Shen , Robert E. Campbell
bioRxiv. 2024 Apr 11:. doi: https://doi.org/10.1117/1.NPh.11.2.024207

Significance: Genetically encoded calcium ion (Ca2+) indicators (GECIs) are powerful tools for monitoring intracellular Ca2+ concentration changes in living cells and model organisms. In particular, GECIs have found particular utility for monitoring the transient increase of Ca2+concentration that is associated with the neuronal action potential. However, the palette of highly optimized GECIs for imaging of neuronal activity remains relatively limited. Expanding the selection of available GECIs to include new colors and distinct photophysical properties could create new opportunities for in vitro and in vivo fluorescence imaging of neuronal activity. In particular, blue-shifted variants of GECIs are expected to have enhanced two-photon brightness, which would facilitate multiphoton microscopy.

Aim: We describe the development and applications of T-GECO1-a high-performance blue-shifted GECI based on the Clavularia sp.-derived mTFP1.

Approach: We use protein engineering and extensive directed evolution to develop T-GECO1. We characterize the purified protein and assess its performance in vitro using one-photon excitation in cultured rat hippocampal neurons, in vivo using one-photon excitation fiber photometry in mice, and ex vivo using two-photon Ca2+ imaging in hippocampal slices.

Results: The Ca2+-bound state of T-GECO1 has an excitation peak maximum of 468 nm, an emission peak maximum of 500 nm, an extinction coefficient of 49,300M−1cm−1, a quantum yield of 0.83, and two-photon brightness approximately double that of EGFP. The Ca2+-dependent fluorescence increase is 15-fold, and the apparent Kd for Ca2+ is 82 nM. With two-photon excitation conditions at 850 nm, T-GECO1 consistently enabled the detection of action potentials with higher signal-to-noise (SNR) than a late generation GCaMP variant.

Conclusions: T-GECO1 is a high-performance blue-shifted GECI that, under two-photon excitation conditions, provides advantages relative to late generation GCaMP variants.

Keywords: blue-shifted fluorescence; genetically encoded calcium ion indicator; neuronal activity imaging; protein engineering; two-photon excitation.

View Publication Page
12/22/22 | A brainstem integrator for self-localization and positional homeostasis
Yang E, Zwart MF, Rubinov M, James B, Wei Z, Narayan S, Vladimirov N, Mensh BD, Fitzgerald JE, Ahrens MB
Cell. 2022 Dec 22;185(26):5011-5027.e20. doi: 10.1101/2021.11.26.468907

To accurately track self-location, animals need to integrate their movements through space. In amniotes, representations of self-location have been found in regions such as the hippocampus. It is unknown whether more ancient brain regions contain such representations and by which pathways they may drive locomotion. Fish displaced by water currents must prevent uncontrolled drift to potentially dangerous areas. We found that larval zebrafish track such movements and can later swim back to their earlier location. Whole-brain functional imaging revealed the circuit enabling this process of positional homeostasis. Position-encoding brainstem neurons integrate optic flow, then bias future swimming to correct for past displacements by modulating inferior olive and cerebellar activity. Manipulation of position-encoding or olivary neurons abolished positional homeostasis or evoked behavior as if animals had experienced positional shifts. These results reveal a multiregional hindbrain circuit in vertebrates for optic flow integration, memory of self-location, and its neural pathway to behavior.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
01/31/17 | A brainstem-spinal cord inhibitory circuit for mechanical pain modulation by GABA and Enkephalins.
François A, Low SA, Sypek EI, Christensen AJ, Sotoudeh C, Beier KT, Ramakrishnan C, Ritola KD, Sharif-Naeini R, Deisseroth K, Delp SL, Malenka RC, Luo L, Hantman AW, Scherrer G
Neuron. 2017 Jan 31;93(4):822-39. doi: 10.1016/j.neuron.2017.01.008

Pain thresholds are, in part, set as a function of emotional and internal states by descending modulation of nociceptive transmission in the spinal cord. Neurons of the rostral ventromedial medulla (RVM) are thought to critically contribute to this process; however, the neural circuits and synaptic mechanisms by which distinct populations of RVM neurons facilitate or diminish pain remain elusive. Here we used in vivo opto/chemogenetic manipulations and trans-synaptic tracing of genetically identified dorsal horn and RVM neurons to uncover an RVM-spinal cord-primary afferent circuit controlling pain thresholds. Unexpectedly, we found that RVM GABAergic neurons facilitate mechanical pain by inhibiting dorsal horn enkephalinergic/GABAergic interneurons. We further demonstrate that these interneurons gate sensory inputs and control pain through temporally coordinated enkephalin- and GABA-mediated presynaptic inhibition of somatosensory neurons. Our results uncover a descending disynaptic inhibitory circuit that facilitates mechanical pain, is engaged during stress, and could be targeted to establish higher pain thresholds.

View Publication Page
Looger Lab
02/01/09 | A bright and photostable photoconvertible fluorescent protein.
McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL
Nature Methods. 2009 Feb;6(2):131-3. doi: 10.1038/nmeth.1296

Photoconvertible fluorescent proteins are potential tools for investigating dynamic processes in living cells and for emerging super-resolution microscopy techniques. Unfortunately, most probes in this class are hampered by oligomerization, small photon budgets or poor photostability. Here we report an EosFP variant that functions well in a broad range of protein fusions for dynamic investigations, exhibits high photostability and preserves the approximately 10-nm localization precision of its parent.

View Publication Page