Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

2715 Janelia Publications

Showing 2561-2570 of 2715 results
Singer Lab
02/02/15 | Tracking surface glycans on live cancer cells with single-molecule sensitivity.
Jiang H, English BP, Hazan RB, Wu P, Ovryn B
Angewandte Chemie International Edition English. 2015 Feb 2;54(6):1765-9. doi: 10.1002/anie.201407976

Using a combination of metabolically labeled glycans, a bioorthogonal copper(I)-catalyzed azide-alkyne cycloaddition, and the controlled bleaching of fluorescent probes conjugated to azide- or alkyne-tagged glycans, a sufficiently low spatial density of dye-labeled glycans was achieved, enabling dynamic single-molecule tracking and super-resolution imaging of N-linked sialic acids and O-linked N-acetyl galactosamine (GalNAc) on the membrane of live cells. Analysis of the trajectories of these dye-labeled glycans in mammary cancer cells revealed constrained diffusion of both N- and O-linked glycans, which was interpreted as reflecting the mobility of the glycan rather than to be caused by transient immobilization owing to spatial inhomogeneities on the plasma membrane. Stochastic optical reconstruction microscopy (STORM) imaging revealed the structure of dynamic membrane nanotubes.

View Publication Page
Cardona Lab
03/29/17 | Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification.
Arganda-Carreras I, Kaynig V, Rueden C, Eliceiri KW, Schindelin J, Cardona A, Seung HS
Bioinformatics (Oxford, England). 2017 Mar 29;33(15):2424-6. doi: 10.1093/bioinformatics/btx180

Summary: State-of-the-art light and electron microscopes are capable of acquiring large image datasets, but quantitatively evaluating the data often involves manually annotating structures of interest. This processis time-consuming and often a major bottleneck in the evaluation pipeline. To overcome this problem, we have introduced the Trainable Weka Segmentation (TWS), a machine learning tool that leveragesa limited number of manual annotations in order to train a classifier and segment the remaining dataautomatically. In addition, TWS can provide unsupervised segmentation learning schemes (clustering) and can be customized to employ user-designed image features or classifiers.

Availability and Implementation: TWS is distributed as open-source software as part of the Fiji image processing distribution of ImageJ at http://imagej.net/Trainable_Weka_Segmentation.

Contact: ignacio.arganda@ehu.eus.

Supplementary information: Supplementary data are available at Bioinformatics online.

View Publication Page
01/07/20 | Trans-endocytosis of intact IL-15Rα-IL-15 complex from presenting cells into NK cells favors signaling for proliferation.
Anton OM, Peterson ME, Hollander MJ, Dorward DW, Arora G, Traba J, Rajagopalan S, Snapp EL, Garcia KC, Waldmann TA, Long EO
Proceedings of the National Academy of Sciences of the United States of America. 2020 Jan 07;117(1):522-531. doi: 10.1073/pnas.1911678117

Interleukin 15 (IL-15) is an essential cytokine for the survival and proliferation of natural killer (NK) cells. IL-15 activates signaling by the β and common γ (γ) chain heterodimer of the IL-2 receptor through -presentation by cells expressing IL-15 bound to the α chain of the IL-15 receptor (IL-15Rα). We show here that membrane-associated IL-15Rα-IL-15 complexes are transferred from presenting cells to NK cells through -endocytosis and contribute to the phosphorylation of ribosomal protein S6 and NK cell proliferation. NK cell interaction with soluble or surface-bound IL-15Rα-IL-15 complex resulted in Stat5 phosphorylation and NK cell survival at a concentration or density of the complex much lower than required to stimulate S6 phosphorylation. Despite this efficient response, Stat5 phosphorylation was reduced after inhibition of metalloprotease-induced IL-15Rα-IL-15 shedding from -presenting cells, whereas S6 phosphorylation was unaffected. Conversely, inhibition of -endocytosis by silencing of the small GTPase TC21 or expression of a dominant-negative TC21 reduced S6 phosphorylation but not Stat5 phosphorylation. Thus, -endocytosis of membrane-associated IL-15Rα-IL-15 provides a mode of regulating NK cells that is not afforded to IL-2 and is distinct from activation by soluble IL-15. These results may explain the strict IL-15 dependence of NK cells and illustrate how the cellular compartment in which receptor-ligand interaction occurs can influence functional outcome.

View Publication Page
07/10/14 | Transcription factors modulate c-Fos transcriptional bursts.
Senecal A, Munsky B, Proux F, Ly N, Braye FE, Zimmer C, Mueller F, Darzacq X
Cell Reports. 2014 Jul 10;8(1):75-83. doi: 10.1016/j.celrep.2014.05.053

Transcription is a stochastic process occurring mostly in episodic bursts. Although the local chromatin environment is known to influence the bursting behavior on long timescales, the impact of transcription factors (TFs)-especially in rapidly inducible systems-is largely unknown. Using fluorescence in situ hybridization and computational models, we quantified the transcriptional activity of the proto-oncogene c-Fos with single mRNA accuracy at individual endogenous alleles. We showed that, during MAPK induction, the TF concentration modulates the burst frequency of c-Fos, whereas other bursting parameters remain mostly unchanged. By using synthetic TFs with TALE DNA-binding domains, we systematically altered different aspects of these bursts. Specifically, we linked the polymerase initiation frequency to the strength of the transactivation domain and the burst duration to the TF lifetime on the promoter. Our results show how TFs and promoter binding domains collectively act to regulate different bursting parameters, offering a vast, evolutionarily tunable regulatory range for individual genes.

View Publication Page
05/01/13 | Transcription factors that convert adult cell identity are differentially polycomb repressed.
Davis FP, Eddy SR
PLoS One. 2013 May;8(5):e63407. doi: 10.1371/journal.pone.0063407

Transcription factors that can convert adult cells of one type to another are usually discovered empirically by testing factors with a known developmental role in the target cell. Here we show that standard genomic methods (RNA-seq and ChIP-seq) can help identify these factors, as most are more strongly Polycomb repressed in the source cell and more highly expressed in the target cell. This criterion is an effective genome-wide screen that significantly enriches for factors that can transdifferentiate several mammalian cell types including neural stem cells, neurons, pancreatic islets, and hepatocytes. These results suggest that barriers between adult cell types, as depicted in Waddington’s "epigenetic landscape", consist in part of differentially Polycomb-repressed transcription factors. This genomic model of cell identity helps rationalize a growing number of transdifferentiation protocols and may help facilitate the engineering of cell identity for regenerative medicine.

View Publication Page
Tjian Lab
08/01/12 | Transcription initiation by human RNA polymerase II visualized at single-molecule resolution.
Revyakin A, Zhang Z, Coleman RA, Li Y, Inouye C, Lucas JK, Park S, Chu S, Tjian R
Genes & Development. 2012 Aug 1;26:1691-702. doi: 10.1101/gad.194936.112

Forty years of classical biochemical analysis have identified the molecular players involved in initiation of transcription by eukaryotic RNA polymerase II (Pol II) and largely assigned their functions. However, a dynamic picture of Pol II transcription initiation and an understanding of the mechanisms of its regulation have remained elusive due in part to inherent limitations of conventional ensemble biochemistry. Here we have begun to dissect promoter-specific transcription initiation directed by a reconstituted human Pol II system at single-molecule resolution using fluorescence video-microscopy. We detected several stochastic rounds of human Pol II transcription from individual DNA templates, observed attenuation of transcription by promoter mutations, observed enhancement of transcription by activator Sp1, and correlated the transcription signals with real-time interactions of holo-TFIID molecules at individual DNA templates. This integrated single-molecule methodology should be applicable to studying other complex biological processes.

View Publication Page
02/18/20 | Transcriptional co-repressor Sin3a regulates hippocampal synaptic plasticity via Homer1/mGluR5.
Bridi MS, Schoch H, Florian C, Poplawski SG, Banerjee A, Hawk JD, Banks GS, Lejards C, Hahn C, Giese KP, Havekes R, Spruston N, Abel T
JCI Insight. 2020 Feb 18:. doi: 10.1172/jci.insight.92385

Long-term memory depends on the control of activity-dependent neuronal gene expression, which is regulated by epigenetic modifications. The epigenetic modification of histones is orchestrated by the opposing activities of two classes of regulatory complexes: permissive co-activators and silencing co-repressors. Much work has focused on co-activator complexes, but little is known about the co-repressor complexes that suppress the expression of plasticity-related genes. Here, we define a critical role for the co-repressor SIN3A in memory and synaptic plasticity, showing that postnatal neuronal deletion of Sin3a enhances hippocampal long-term potentiation and long-term contextual fear memory. SIN3A regulates the expression of genes encoding proteins in the post-synaptic density. Loss of SIN3A increases expression of the synaptic scaffold Homer1, alters the mGluR1α- and mGluR5-dependence of long-term potentiation, and increases activation of extracellular signal regulated kinase (ERK) in the hippocampus after learning. Our studies define a critical role for co-repressors in modulating neural plasticity and memory consolidation and reveal that Homer1/mGluR signaling pathways may be central molecular mechanisms for memory enhancement.

View Publication Page
02/01/16 | Transcriptomes of lineage-specific Drosophila neuroblasts profiled by genetic targeting and robotic sorting.
Yang C, Fu C, Sugino K, Liu Z, Ren Q, Liu L, Yao X, Lee LP, Lee T
Development (Cambridge, England). 2016 Feb 1;143(3):411-21. doi: 10.1242/dev.129163

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.

View Publication Page
04/07/24 | Transformers do not outperform Cellpose
Carsen Stringer , Marius Pachitariu
bioRxiv. 2024 Apr 7:. doi: 10.1101/2024.04.06.587952

In a recent publication, Ma et al [1] claim that a transformer-based cellular segmentation method called Mediar [2] — which won a Neurips challenge — outperforms Cellpose [3] (0.897 vs 0.543 median F1 score). Here we show that this result was obtained by artificially impairing Cellpose in multiple ways. When we removed these impairments, Cellpose outperformed Mediar (0.861 vs 0.826 median F1 score on the updated test set). To further investigate the performance of transformers for cellular segmentation, we replaced the Cellpose backbone with a transformer. The transformer-Cellpose model also did not outperform the standard Cellpose (0.848 median F1 test score). Our results suggest that transformers do not advance the state-of-the-art in cellular segmentation.

View Publication Page
01/01/24 | Transforming chemigenetic bimolecular fluorescence complementation systems into chemical dimerizers using chemistry.
Pratik Kumar , Alina Gutu , Amelia Waring , Timothy A. Brown , Luke D. Lavis , Alison G. Tebo
bioRxiv. 2024 Jan 01:. doi: 10.1101/2023.12.30.573644

Chemigenetic tags are versatile labels for fluorescence microscopy that combine some of the advantages of genetically encoded tags with small molecule fluorophores. The Fluorescence Activating and absorbance Shifting Tags (FASTs) bind a series of highly fluorogenic and cell-permeable chromophores. Furthermore, FASTs can be used in complementation-based systems for detecting or inducing protein-protein interactions, depending on the exact FAST protein variant chosen. In this study, we systematically explore substitution patterns on FAST fluorogens and generate a series of fluorogens that bind to FAST variants, thereby activating their fluorescence. This effort led to the discovery of a novel fluorogen with superior properties, as well as a fluorogen that transforms splitFAST systems into a fluorogenic dimerizer, eliminating the need for additional protein engineering.

View Publication Page