Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

174 Janelia Publications

Showing 31-40 of 174 results
Your Criteria:
    11/01/21 | An open-access volume electron microscopy atlas of whole cells and tissues.
    Xu CS, Pang S, Shtengel G, Müller A, Ritter AT, Hoffman HK, Takemura S, Lu Z, Pasolli HA, Iyer N, Chung J, Bennett D, Weigel AV, Freeman M, Van Engelenburg SB, Walther TC, Farese RV, Lippincott-Schwartz J, Mellman I, Solimena M, Hess HF
    Nature. 2021 Nov 1;599(7883):147-51. doi: 10.1038/s41586-021-03992-4

    Understanding cellular architecture is essential for understanding biology. Electron microscopy (EM) uniquely visualizes cellular structures with nanometre resolution. However, traditional methods, such as thin-section EM or EM tomography, have limitations in that they visualize only a single slice or a relatively small volume of the cell, respectively. Focused ion beam-scanning electron microscopy (FIB-SEM) has demonstrated the ability to image small volumes of cellular samples with 4-nm isotropic voxels. Owing to advances in the precision and stability of FIB milling, together with enhanced signal detection and faster SEM scanning, we have increased the volume that can be imaged with 4-nm voxels by two orders of magnitude. Here we present a volume EM atlas at such resolution comprising ten three-dimensional datasets for whole cells and tissues, including cancer cells, immune cells, mouse pancreatic islets and Drosophila neural tissues. These open access data (via OpenOrganelle) represent the foundation of a field of high-resolution whole-cell volume EM and subsequent analyses, and we invite researchers to explore this atlas and pose questions.

    View Publication Page
    11/01/21 | CONFIRMS: A Toolkit for Scalable, Black Box Connectome Assessment and Investigation.
    Bishop C, Matelsky J, Wilt M, Downs J, Rivlin P, Plaza S, Wester B, Gray-Roncal W
    Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2021 Nov 01;2021:2444-2450. doi: 10.1109/EMBC46164.2021.9630109

    The nanoscale connectomics community has recently generated automated and semi-automated "wiring diagrams" of brain subregions from terabytes and petabytes of dense 3D neuroimagery. This process involves many challenging and imperfect technical steps, including dense 3D image segmentation, anisotropic nonrigid image alignment and coregistration, and pixel classification of each neuron and their individual synaptic connections. As data volumes continue to grow in size, and connectome generation becomes increasingly commonplace, it is important that the scientific community is able to rapidly assess the quality and accuracy of a connectome product to promote dataset analysis and reuse. In this work, we share our scalable toolkit for assessing the quality of a connectome reconstruction via targeted inquiry and large-scale graph analysis, and to provide insights into how such connectome proofreading processes may be improved and optimized in the future. We illustrate the applications and ecosystem on a recent reference dataset.Clinical relevance- Large-scale electron microscopy (EM) data offers a novel opportunity to characterize etiologies and neurological diseases and conditions at an unprecedented scale. EM is useful for low-level analyses such as biopsies; this increased scale offers new possibilities for research into areas such as neural networks if certain bottlenecks and problems are overcome.

    View Publication Page
    11/01/21 | Distinct genetic architectures underlie divergent thorax, leg, and wing pigmentation between Drosophila elegans and D. gunungcola.
    Massey JH, Li J, Stern DL, Wittkopp PJ
    Heredity. 2021 Nov 01;127(5):467-74. doi: 10.1038/s41437-021-00467-0

    Pigmentation divergence between Drosophila species has emerged as a model trait for studying the genetic basis of phenotypic evolution, with genetic changes contributing to pigmentation differences often mapping to genes in the pigment synthesis pathway and their regulators. These studies of Drosophila pigmentation have tended to focus on pigmentation changes in one body part for a particular pair of species, but changes in pigmentation are often observed in multiple body parts between the same pair of species. The similarities and differences of genetic changes responsible for divergent pigmentation in different body parts of the same species thus remain largely unknown. Here we compare the genetic basis of pigmentation divergence between Drosophila elegans and D. gunungcola in the wing, legs, and thorax. Prior work has shown that regions of the genome containing the pigmentation genes yellow and ebony influence the size of divergent male-specific wing spots between these two species. We find that these same two regions of the genome underlie differences in leg and thorax pigmentation; however, divergent alleles in these regions show differences in allelic dominance and epistasis among the three body parts. These complex patterns of inheritance can be explained by a model of evolution involving tissue-specific changes in the expression of Yellow and Ebony between D. elegans and D. gunungcola.

    View Publication Page
    11/01/21 | Whole-cell organelle segmentation in volume electron microscopy.
    Heinrich L, Bennett D, Ackerman D, Park W, Bogovic J, Eckstein N, Petruncio A, Clements J, Pang S, Xu CS, Funke J, Korff W, Hess HF, Lippincott-Schwartz J, Saalfeld S, Weigel AV, COSEM Project Team
    Nature. 2021 Nov 01;599(7883):141-46. doi: 10.1038/s41586-021-03977-3

    Cells contain hundreds of organelles and macromolecular assemblies. Obtaining a complete understanding of their intricate organization requires the nanometre-level, three-dimensional reconstruction of whole cells, which is only feasible with robust and scalable automatic methods. Here, to support the development of such methods, we annotated up to 35 different cellular organelle classes-ranging from endoplasmic reticulum to microtubules to ribosomes-in diverse sample volumes from multiple cell types imaged at a near-isotropic resolution of 4 nm per voxel with focused ion beam scanning electron microscopy (FIB-SEM). We trained deep learning architectures to segment these structures in 4 nm and 8 nm per voxel FIB-SEM volumes, validated their performance and showed that automatic reconstructions can be used to directly quantify previously inaccessible metrics including spatial interactions between cellular components. We also show that such reconstructions can be used to automatically register light and electron microscopy images for correlative studies. We have created an open data and open-source web repository, 'OpenOrganelle', to share the data, computer code and trained models, which will enable scientists everywhere to query and further improve automatic reconstruction of these datasets.

    View Publication Page
    10/28/21 | Biosensors based on peptide exposure show single molecule conformations in live cells.
    Liu B, Stone OJ, Pablo M, Herron JC, Nogueira AT, Dagliyan O, Grimm JB, Lavis LD, Elston TC, Hahn KM
    Cell. 2021 Oct 28;184(22):5670-5685. doi: 10.1016/j.cell.2021.09.026

    We describe an approach to study the conformation of individual proteins during single particle tracking (SPT) in living cells. "Binder/tag" is based on incorporation of a 7-mer peptide (the tag) into a protein where its solvent exposure is controlled by protein conformation. Only upon exposure can the peptide specifically interact with a reporter protein (the binder). Thus, simple fluorescence localization reflects protein conformation. Through direct excitation of bright dyes, the trajectory and conformation of individual proteins can be followed. Simple protein engineering provides highly specific biosensors suitable for SPT and FRET. We describe tagSrc, tagFyn, tagSyk, tagFAK, and an orthogonal binder/tag pair. SPT showed slowly diffusing islands of activated Src within Src clusters and dynamics of activation in adhesions. Quantitative analysis and stochastic modeling revealed in vivo Src kinetics. The simplicity of binder/tag can provide access to diverse proteins.

    View Publication Page
    10/26/21 | A connectome of the central complex reveals network motifs suitable for flexible navigation and context-dependent action selection.
    Hulse BK, Haberkern H, Franconville R, Turner-Evans DB, Takemura S, Wolff T, Noorman M, Dreher M, Dan C, Parekh R, Hermundstad AM, Rubin GM, Jayaraman V
    eLife. 2021 Oct 26;10:. doi: 10.7554/eLife.66039

    Flexible behaviors over long timescales are thought to engage recurrent neural networks in deep brain regions, which are experimentally challenging to study. In insects, recurrent circuit dynamics in a brain region called the central complex (CX) enable directed locomotion, sleep, and context- and experience-dependent spatial navigation. We describe the first complete electron-microscopy-based connectome of the CX, including all its neurons and circuits at synaptic resolution. We identified new CX neuron types, novel sensory and motor pathways, and network motifs that likely enable the CX to extract the fly's head-direction, maintain it with attractor dynamics, and combine it with other sensorimotor information to perform vector-based navigational computations. We also identified numerous pathways that may facilitate the selection of CX-driven behavioral patterns by context and internal state. The CX connectome provides a comprehensive blueprint necessary for a detailed understanding of network dynamics underlying sleep, flexible navigation, and state-dependent action selection.

    View Publication Page
    10/19/21 | A pair of dopamine neurons mediate chronic stress signals to induce learning deficit in Drosophila melanogaster.
    Jia J, He L, Yang J, Shuai Y, Yang J, Wu Y, Liu X, Chen T, Wang G, Wang X, Song X, Ding Z, Zhu Y, Ling-Qi Zhang , Chen P, Qin H
    Proceedings of the National Academy of Sciences of the U. S. A.. 2021 Oct 19;118(42):. doi: 10.1073/pnas.2023674118

    Chronic stress could induce severe cognitive impairments. Despite extensive investigations in mammalian models, the underlying mechanisms remain obscure. Here, we show that chronic stress could induce dramatic learning and memory deficits in The chronic stress-induced learning deficit (CSLD) is long lasting and associated with other depression-like behaviors. We demonstrated that excessive dopaminergic activity provokes susceptibility to CSLD. Remarkably, a pair of PPL1-γ1pedc dopaminergic neurons that project to the mushroom body (MB) γ1pedc compartment play a key role in regulating susceptibility to CSLD so that stress-induced PPL1-γ1pedc hyperactivity facilitates the development of CSLD. Consistently, the mushroom body output neurons (MBON) of the γ1pedc compartment, MBON-γ1pedc>α/β neurons, are important for modulating susceptibility to CSLD. Imaging studies showed that dopaminergic activity is necessary to provoke the development of chronic stress-induced maladaptations in the MB network. Together, our data support that PPL1-γ1pedc mediates chronic stress signals to drive allostatic maladaptations in the MB network that lead to CSLD.

    View Publication Page
    10/19/21 | Hippocampal and thalamic afferents form distinct synaptic microcircuits in the mouse frontal cortex.
    Kourtney Graham , Nelson Spruston , Erik Bloss
    Cell Reports. 2021 October 19;37(3):109837

    Neural circuits within the frontal cortex support the flexible selection of goal-directed behaviors by integrating input from brain regions associated with sensory, emotional, episodic, and semantic memory functions. From a connectomics perspective, determining how these disparate afferent inputs target their synapses to specific cell types in the frontal cortex may prove crucial in understanding circuit-level information processing. Here, we used monosynaptic retrograde rabies mapping to examine the distribution of afferent neurons targeting four distinct classes of local inhibitory interneurons and four distinct classes of excitatory projection neurons in mouse infralimbic cortex. Interneurons expressing parvalbumin, somatostatin, or vasoactive intestinal peptide received a large proportion of inputs from hippocampal regions, while interneurons expressing neuron-derived neurotrophic factor received a large proportion of inputs from thalamic regions. A more moderate hippocampal-thalamic dichotomy was found among the inputs targeting excitatory neurons that project to the basolateral amygdala, lateral entorhinal cortex, nucleus reuniens of the thalamus, and the periaqueductal gray. Together, these results show a prominent bias among hippocampal and thalamic afferent systems in their targeting to genetically or anatomically defined sets of frontal cortical neurons. Moreover, they suggest the presence of two distinct local microcircuits that control how different inputs govern frontal cortical information processing.

    View Publication Page
    10/18/21 | Genetically identified amygdala-striatal circuits for valence-specific behaviors.
    Zhang X, Guan W, Yang T, Furlan A, Xiao X, Yu K, An X, Galbavy W, Ramakrishnan C, Deisseroth K, Ritola K, Hantman A, He M, Josh Huang Z, Li B
    Nature Neuroscience. 2021 Oct 18;24(11):1586-1600. doi: 10.1038/s41593-021-00927-0

    The basolateral amygdala (BLA) plays essential roles in behaviors motivated by stimuli with either positive or negative valence, but how it processes motivationally opposing information and participates in establishing valence-specific behaviors remains unclear. Here, by targeting Fezf2-expressing neurons in the BLA, we identify and characterize two functionally distinct classes in behaving mice, the negative-valence neurons and positive-valence neurons, which innately represent aversive and rewarding stimuli, respectively, and through learning acquire predictive responses that are essential for punishment avoidance or reward seeking. Notably, these two classes of neurons receive inputs from separate sets of sensory and limbic areas, and convey punishment and reward information through projections to the nucleus accumbens and olfactory tubercle, respectively, to drive negative and positive reinforcement. Thus, valence-specific BLA neurons are wired with distinctive input-output structures, forming a circuit framework that supports the roles of the BLA in encoding, learning and executing valence-specific motivated behaviors.

    View Publication Page
    10/14/21 | Rapid synaptic plasticity contributes to a learned conjunctive code of position and choice-related information in the hippocampus
    Xinyu Zhao , Ching-Lung Hsu , Nelson Spruston
    Neuron. 2021 Oct 14:. doi: https://doi.org/10.1101/2021.06.30.450574

    To successfully perform goal-directed navigation, animals must know where they are and what they are doing—e.g., looking for water, bringing food back to the nest, or escaping from a predator. Hippocampal neurons code for these critical variables conjunctively, but little is known about how this where/what code is formed or flexibly routed to other brain regions. To address these questions, we performed intracellular whole-cell recordings in mouse CA1 during a cued, two-choice virtual navigation task. We demonstrate that plateau potentials in CA1 pyramidal neurons rapidly strengthen synaptic inputs carrying conjunctive information about position and choice. Plasticity-induced response fields were modulated by cues only in animals previously trained to collect rewards based on these cues. Thus, we reveal that gradual learning is required for the formation of a conjunctive population code, upstream of CA1, while plateau-potential-induced synaptic plasticity in CA1 enables flexible routing of the code to downstream brain regions.

    View Publication Page