Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

166 Janelia Publications

Showing 51-60 of 166 results
Your Criteria:
    09/06/22 | A sensitive and specific genetically encoded potassium ion biosensor for in vivo applications across the tree of life.
    Wu S, Wen Y, Serre NB, Laursen CC, Dietz AG, Taylor BR, Drobizhev M, Molina RS, Abhi Aggarwal , Rancic V, Becker M, Ballanyi K, Podgorski K, Hirase H, Nedergaard M, Fendrych M, Lemieux MJ, Eberl DF, Kay AR, Campbell RE, Shen Y
    PLoS Biology. 2022 Sep 06;20(9):e3001772. doi: 10.1371/journal.pbio.3001772

    Potassium ion (K+) plays a critical role as an essential electrolyte in all biological systems. Genetically encoded fluorescent K+ biosensors are promising tools to further improve our understanding of K+-dependent processes under normal and pathological conditions. Here, we report the crystal structure of a previously reported genetically encoded fluorescent K+ biosensor, GINKO1, in the K+-bound state. Using structure-guided optimization and directed evolution, we have engineered an improved K+ biosensor, designated GINKO2, with higher sensitivity and specificity. We have demonstrated the utility of GINKO2 for in vivo detection and imaging of K+ dynamics in multiple model organisms, including bacteria, plants, and mice.

    View Publication Page
    09/05/22 | Automated reconstruction of whole-embryo cell lineages by learning from sparse annotations.
    Malin-Mayor C, Hirsch P, Guignard L, McDole K, Wan Y, Lemon WC, Kainmueller D, Keller PJ, Preibisch S, Funke J
    Nature Biotechnology. 2022 Sep 05:. doi: 10.1038/s41587-022-01427-7

    We present a method to automatically identify and track nuclei in time-lapse microscopy recordings of entire developing embryos. The method combines deep learning and global optimization. On a mouse dataset, it reconstructs 75.8% of cell lineages spanning 1 h, as compared to 31.8% for the competing method. Our approach improves understanding of where and when cell fate decisions are made in developing embryos, tissues, and organs.

    View Publication Page
    09/03/22 | Motion of single molecular tethers reveals dynamic subdomains at ER-mitochondria contact sites
    Christopher J. Obara , Jonathon Nixon-Abell , Andrew S. Moore , Federica Riccio , David P. Hoffman , Gleb Shtengel , C. Shan Xu , Kathy Schaefer , H. Amalia Pasolli , Jean-Baptiste Masson , Harald F. Hess , Christopher P. Calderon , Craig Blackstone , Jennifer Lippincott-Schwartz
    bioRxiv. 2022 Sep 03:. doi: 10.1101/2022.09.03.505525

    To coordinate cellular physiology, eukaryotic cells rely on the inter-organelle transfer of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondria contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites3. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle4,5. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation6,7, a clear understanding of their nanoscale structure and regulation is still lacking. Here, we combine 3D electron microscopy with high-speed molecular tracking of a model organelle tether, VAPB, to map the structure and diffusion landscape of ERMCSs. From EM reconstructions, we identified subdomains within the contact site where ER membranes dramatically deform to match local mitochondrial curvature. In parallel live cell experiments, we observed that the VAPB tethers that mediate this interface were not immobile, but rather highly dynamic, entering and leaving the site in seconds. These subdomains enlarged during nutrient stress, indicating ERMCSs can readily remodel under different physiological conditions. An ALS-associated mutation in VAPB altered the normal fluidity of contact sites, likely perturbing effective communication across the contact site and preventing remodeling. These results establish high speed single molecule imaging as a new tool for mapping the structure of contact site interfaces and suggest that the diffusion landscape of VAPB is a crucial component of ERMCS homeostasis.

    View Publication Page
    09/02/22 | Tracing and Manipulating Drosophila Cell Lineages Based on CRISPR: CaSSA and CLADES.
    Garcia-Marques J, Lee T
    Methods in Molecular Biology. 2022 Sep 02;2540:201-217. doi: 10.1007/978-1-0716-2541-5_9

    Cell lineage defines the mitotic connection between cells that make up an organism. Mapping these connections in relation to cell identity offers an extraordinary insight into the mechanisms underlying normal and pathological development. The analysis of molecular determinants involved in the acquisition of cell identity requires gaining experimental access to precise parts of cell lineages. Recently, we have developed CaSSA and CLADES, a new technology based on CRISPR that allows targeting and labeling specific lineage branches. Here we discuss how to better exploit this technology for lineage studies in Drosophila, with an emphasis on neuronal specification.

    View Publication Page
    09/01/22 | A serotonergic axon-cilium synapse drives nuclear signaling to maintain chromatin accessibility
    Shu-Hsien Sheu , Srigokul Upadhyayula , Vincent Dupuy , Song Pang , Andrew L. Lemire , Deepika Walpita , H. Amalia Pasolli , Fei Deng , Jinxia Wan , Lihua Wang , Justin Houser , Silvia Sanchez-Martinez , Sebastian E. Brauchi , Sambashiva Banala , Melanie Freeman , C. Shan Xu , Tom Kirchhausen , Harald F. Hess , Luke Lavis , Yu-Long Li , Séverine Chaumont-Dubel , David E. Clapham
    Cell. 2022 Sep 01;185(18):3390-3407. doi: 10.1016/j.cell.2022.07.026

    Chemical synapses between axons and dendrites mediate much of the brain’s intercellular communication. Here we describe a new kind of synapse – the axo-ciliary synapse - between axons and primary cilia. By employing enhanced focused ion beam – scanning electron microscopy on samples with optimally preserved ultrastructure, we discovered synapses between the serotonergic axons arising from the brainstem, and the primary cilia of hippocampal CA1 pyramidal neurons. Functionally, these cilia are enriched in a ciliary-restricted serotonin receptor, 5-hydroxytryptamine receptor 6 (HTR6), whose mutation is associated with learning and memory defects. Using a newly developed cilia-targeted serotonin sensor, we show that optogenetic stimulation of serotonergic axons results in serotonin release onto cilia. Ciliary HTR6 stimulation activates a non-canonical Gαq/11-RhoA pathway. Ablation of this pathway results in nuclear actin and chromatin accessibility changes in CA1 pyramidal neurons. Axo-ciliary synapses serve as a distinct mechanism for neuromodulators to program neuron transcription through privileged access to the nuclear compartment.

    View Publication Page
    08/25/22 | In situ single particle classification reveals distinct 60S maturation intermediates in cells.
    Bronwyn A. Lucas , Kexin Zhang , Sarah Loerch , Nikolaus Grigorieff
    eLife. 2022 Aug 25:. doi: 10.7554/eLife.79272

    Electron cryo-microscopy (cryo-EM) can generate high-resolution views of cells with faithful preservation of molecular structure. In situ cryo-EM, therefore, has enormous potential to reveal the atomic details of biological processes in their native context. However, in practice, the utility of in situ cryo-EM is limited by the difficulty of reliably locating and confidently identifying molecular targets (particles) and their conformational states in the crowded cellular environment. We recently showed that 2DTM, a fine-grained template-based search applied to cryo-EM micrographs, can localize particles in two-dimensional views of cells with high precision. Here we demonstrate that the signal-to-noise ratio (SNR) observed with 2DTM can be used to differentiate related complexes in focused ion beam (FIB)-milled cell sections. We apply this method in two contexts to locate and classify related intermediate states of 60S ribosome biogenesis in the Saccharomyces cerevisiae cell nucleus. In the first, we separate the nuclear pre-60S population from the cytoplasmic mature 60S population, using the subcellular localization to validate assignment. In the second, we show that relative 2DTM SNRs can be used to separate mixed populations of nuclear pre-60S that are not visually separable. We use a maximum likelihood approach to define the probability of each particle belonging to each class, thereby establishing a statistic to describe the confidence of our classification. Without the need to generate 3D reconstructions, 2DTM can be applied even when only a few target particles exist in a cell.

    View Publication Page
    08/24/22 | A single-cell transcriptomic atlas of complete insect nervous systems across multiple life stages.
    Corrales M, Cocanougher BT, Kohn AB, Wittenbach JD, Long XS, Lemire A, Cardona A, Singer RH, Moroz LL, Zlatic M
    Neural Development. 2022 Aug 24;17(1):8. doi: 10.1186/s13064-022-00164-6

    Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.

    View Publication Page
    08/23/22 | Transverse endoplasmic reticulum expansion in hereditary spastic paraplegia corticospinal axons.
    Zhu P, Hung H, Batchenkova N, Nixon-Abell J, Henderson J, Zheng P, Renvoisé B, Pang S, Xu CS, Saalfeld S, Funke J, Xie Y, Svara F, Hess HF, Blackstone C
    Human Molecular Genetics. 2022 Aug 23;31(16):2779-2795. doi: 10.1093/hmg/ddac072

    Hereditary spastic paraplegias (HSPs) comprise a large group of inherited neurologic disorders affecting the longest corticospinal axons (SPG1-86 plus others), with shared manifestations of lower extremity spasticity and gait impairment. Common autosomal dominant HSPs are caused by mutations in genes encoding the microtubule-severing ATPase spastin (SPAST; SPG4), the membrane-bound GTPase atlastin-1 (ATL1; SPG3A) and the reticulon-like, microtubule-binding protein REEP1 (REEP1; SPG31). These proteins bind one another and function in shaping the tubular endoplasmic reticulum (ER) network. Typically, mouse models of HSPs have mild, later onset phenotypes, possibly reflecting far shorter lengths of their corticospinal axons relative to humans. Here, we have generated a robust, double mutant mouse model of HSP in which atlastin-1 is genetically modified with a K80A knock-in (KI) missense change that abolishes its GTPase activity, whereas its binding partner Reep1 is knocked out. Atl1KI/KI/Reep1-/- mice exhibit early onset and rapidly progressive declines in several motor function tests. Also, ER in mutant corticospinal axons dramatically expands transversely and periodically in a mutation dosage-dependent manner to create a ladder-like appearance, on the basis of reconstructions of focused ion beam-scanning electron microscopy datasets using machine learning-based auto-segmentation. In lockstep with changes in ER morphology, axonal mitochondria are fragmented and proportions of hypophosphorylated neurofilament H and M subunits are dramatically increased in Atl1KI/KI/Reep1-/- spinal cord. Co-occurrence of these findings links ER morphology changes to alterations in mitochondrial morphology and cytoskeletal organization. Atl1KI/KI/Reep1-/- mice represent an early onset rodent HSP model with robust behavioral and cellular readouts for testing novel therapies.

    View Publication Page
    08/22/22 | Neuronal circuits integrating visual motion information in Drosophila melanogaster.
    Shinomiya K, Nern A, Meinertzhagen IA, Plaza SM, Reiser MB
    Current Biology. 2022 Aug 22;32(16):3529-3544. doi: 10.1016/j.cub.2022.06.061

    The detection of visual motion enables sophisticated animal navigation, and studies on flies have provided profound insights into the cellular and circuit bases of this neural computation. The fly's directionally selective T4 and T5 neurons encode ON and OFF motion, respectively. Their axons terminate in one of the four retinotopic layers in the lobula plate, where each layer encodes one of the four directions of motion. Although the input circuitry of the directionally selective neurons has been studied in detail, the synaptic connectivity of circuits integrating T4/T5 motion signals is largely unknown. Here, we report a 3D electron microscopy reconstruction, wherein we comprehensively identified T4/T5's synaptic partners in the lobula plate, revealing a diverse set of new cell types and attributing new connectivity patterns to the known cell types. Our reconstruction explains how the ON- and OFF-motion pathways converge. T4 and T5 cells that project to the same layer connect to common synaptic partners and comprise a core motif together with bilayer interneurons, detailing the circuit basis for computing motion opponency. We discovered pathways that likely encode new directions of motion by integrating vertical and horizontal motion signals from upstream T4/T5 neurons. Finally, we identify substantial projections into the lobula, extending the known motion pathways and suggesting that directionally selective signals shape feature detection there. The circuits we describe enrich the anatomical basis for experimental and computations analyses of motion vision and bring us closer to understanding complete sensory-motor pathways.

    View Publication Page
    08/22/22 | Visual projection neuron convergence and compensation in developing sensorimotor circuits in the Drosophila optic glomeruli
    Brennan W. McFarland , HyoJong Jang , Natalie Smolin , Tanja A. Godenschwege , Aljoscha Nern , Yerbol Z. Kurmangaliyev , Catherine R. von Reyn

    Visual features detected by the early visual system must be combined into higher order representations to guide behavioral decision. Although key developmental mechanisms that enable the separation of visual feature channels in early visual circuits have been discovered, relatively little is known about the mechanisms that underlie their convergence in later stages of visual processing. Here we explore the development of a functionally well-characterized sensorimotor circuit in Drosophila melanogaster, the convergence of visual projection neurons (VPNs) onto the dendrites of a large descending neuron called the giant fiber (GF). We find two VPNs encoding different visual features that target the same giant fiber dendrite establish their territories on the dendrite, in part, through sequential axon arrival during development prior to synaptogenesis. Physical occupancy is important to maintain territories, as we find the ablation of one VPN results in expanded dendrite territory of the remaining VPN, and that this compensation enables the GF to remain responsive to ethologically relevant visual stimuli. Our data highlight temporal mechanisms for visual feature convergence and promote the GF circuit, and the Drosophila optic glomeruli where VPN to GF connectivity resides, as an ideal developmental model for investigating complex wiring programs and plasticity in visual feature convergence.

    View Publication Page