Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

general_search_page-panel_pane_1 | views_panes

15 Janelia Publications

Showing 11-15 of 15 results
Your Criteria:
    06/22/20 | A neural representation of naturalistic motion-guided behavior in the zebrafish brain.
    Yildizoglu T, Riegler C, Fitzgerald JE, Portugues R
    Current Biology. 2020 Jun 22;30(12):2321-33. doi: 10.1016/j.cub.2020.04.043

    All animals must transform ambiguous sensory data into successful behavior. This requires sensory representations that accurately reflect the statistics of natural stimuli and behavior. Multiple studies show that visual motion processing is tuned for accuracy under naturalistic conditions, but the sensorimotor circuits extracting these cues and implementing motion-guided behavior remain unclear. Here we show that the larval zebrafish retina extracts a diversity of naturalistic motion cues, and the retinorecipient pretectum organizes these cues around the elements of behavior. We find that higher-order motion stimuli, gliders, induce optomotor behavior matching expectations from natural scene analyses. We then image activity of retinal ganglion cell terminals and pretectal neurons. The retina exhibits direction-selective responses across glider stimuli, and anatomically clustered pretectal neurons respond with magnitudes matching behavior. Peripheral computations thus reflect natural input statistics, whereas central brain activity precisely codes information needed for behavior. This general principle could organize sensorimotor transformations across animal species.

    View Publication Page
    03/24/20 | Correcting for physical distortions in visual stimuli improves reproducibility in zebrafish neuroscience.
    Dunn TW, Fitzgerald JE
    eLife. 2020 Mar 24;9:. doi: 10.7554/eLife.53684

    Breakthrough technologies for monitoring and manipulating single-neuron activity provide unprecedented opportunities for whole-brain neuroscience in larval zebrafish1–9. Understanding the neural mechanisms of visually guided behavior also requires precise stimulus control, but little prior research has accounted for physical distortions that result from refraction and reflection at an air-water interface that usually separates the projected stimulus from the fish10–12. Here we provide a computational tool that transforms between projected and received stimuli in order to detect and control these distortions. The tool considers the most commonly encountered interface geometry, and we show that this and other common configurations produce stereotyped distortions. By correcting these distortions, we reduced discrepancies in the literature concerning stimuli that evoke escape behavior13,14, and we expect this tool will help reconcile other confusing aspects of the literature. This tool also aids experimental design, and we illustrate the dangers that uncorrected stimuli pose to receptive field mapping experiments.

    View Publication Page
    10/15/19 | Asymmetric ON-OFF processing of visual motion cancels variability induced by the structure of natural scenes.
    Chen J, Mandel HB, Fitzgerald JE, Clark DA
    eLife. 2019 Oct 15;8:. doi: 10.7554/eLife.47579

    Animals detect motion using a variety of visual cues that reflect regularities in the natural world. Experiments in animals across phyla have shown that motion percepts incorporate both pairwise and triplet spatiotemporal correlations that could theoretically benefit motion computation. However, it remains unclear how visual systems assemble these cues to build accurate motion estimates. Here we used systematic behavioral measurements of fruit fly motion perception to show how flies combine local pairwise and triplet correlations to reduce variability in motion estimates across natural scenes. By generating synthetic images with statistics controlled by maximum entropy distributions, we show that the triplet correlations are useful only when images have light-dark asymmetries that mimic natural ones. This suggests that asymmetric ON-OFF processing is tuned to the particular statistics of natural scenes. Since all animals encounter the world's light-dark asymmetries, many visual systems are likely to use asymmetric ON-OFF processing to improve motion estimation.

    View Publication Page
    01/07/19 | Threshold-based ordering of sequential actions during Drosophila courtship.
    McKellar CE, Lillvis JL, Bath DE, Fitzgerald JE, Cannon JG, Simpson JH, Dickson BJ
    Current Biology : CB. 2019 Jan 07;29(3):426-34. doi: 10.1016/j.cub.2018.12.019

    Goal-directed animal behaviors are typically composed of sequences of motor actions whose order and timing are critical for a successful outcome. Although numerous theoretical models for sequential action generation have been proposed, few have been supported by the identification of control neurons sufficient to elicit a sequence. Here, we identify a pair of descending neurons that coordinate a stereotyped sequence of engagement actions during Drosophila melanogaster male courtship behavior. These actions are initiated sequentially but persist cumulatively, a feature not explained by existing models of sequential behaviors. We find evidence consistent with a ramp-to-threshold mechanism, in which increasing neuronal activity elicits each action independently at successively higher activity thresholds.

    View Publication Page
    10/31/18 | The neuronal basis of an illusory motion percept is explained by decorrelation of parallel motion pathways.
    Salazar-Gatzimas E, Agrochao M, Fitzgerald JE, Clark DA
    Current Biology : CB. 2018 Oct 31;28(23):3748-78. doi: 10.1016/j.cub.2018.10.007

    Both vertebrates and invertebrates perceive illusory motion, known as "reverse-phi," in visual stimuli that contain sequential luminance increments and decrements. However, increment (ON) and decrement (OFF) signals are initially processed by separate visual neurons, and parallel elementary motion detectors downstream respond selectively to the motion of light or dark edges, often termed ON- and OFF-edges. It remains unknown how and where ON and OFF signals combine to generate reverse-phi motion signals. Here, we show that each of Drosophila's elementary motion detectors encodes motion by combining both ON and OFF signals. Their pattern of responses reflects combinations of increments and decrements that co-occur in natural motion, serving to decorrelate their outputs. These results suggest that the general principle of signal decorrelation drives the functional specialization of parallel motion detection channels, including their selectivity for moving light or dark edges.

    View Publication Page