Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom


facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block

Associated Support Team

facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

3 Janelia Publications

Showing 1-3 of 3 results
Your Criteria:
    10/02/17 | Genetic reagents for making split-GAL4 lines in Drosophila.
    Dionne H, Hibbard KL, Cavallaro A, Kao J, Rubin GM
    bioRxiv. 2017 Oct 02:197509. doi: 10.1101/197509

    The ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2,800 transgenic lines for use with the split-GAL4 intersectional method.

    View Publication Page
    08/28/15 | The Transgenic RNAi Project at Harvard Medical School: Resources and Validation.
    Perkins LA, Holderbaum L, Tao R, Hu Y, Sopko R, McCall K, Yang-Zhou D, Flockhart I, Binari R, Shim H, Miller A, Housden A, Foos M, Randkelv S, Kelley C, Namgyal P, Villalta C, Liu L, Jiang X, Huan-Huan Q, Xia W, Fujiyama A, Toyoda A, Ayers K, Blum A, Czech B, Neumuller R, Yan D, Cavallaro A, Hibbard K, Hall D, Cooley L, Hannon GJ, Lehmann R, Parks A, Mohr SE, Ueda R, Kondo S, Ni J, Perrimon N
    Genetics. 2015 Aug 28;201(3):843-52. doi: 10.1534/genetics.115.180208

    To facilitate large scale functional studies in Drosophila, the Drosophila Transgenic RNAi Project (TRiP) at Harvard Medical School (HMS) was established along with several goals: developing efficient vectors for RNAi that work in all tissues, generating a genome scale collection of RNAi stocks with input from the community, distributing the lines as they are generated through existing stock centers, validating as many lines as possible using RT-qPCR and phenotypic analyses, and developing tools and web resources for identifying RNAi lines and retrieving existing information on their quality. With these goals in mind, here we describe in detail the various tools we developed and the status of the collection, which is currently comprised of 11,491 lines and covering 71% of Drosophila genes. Data on the characterization of the lines either by RT-qPCR or phenotype is available on a dedicated web site, the RNAi Stock Validation and Phenotypes Project (RSVP;, and stocks are available from three stock centers, the Bloomington Drosophila Stock Center (USA), National Institute of Genetics (Japan), and TsingHua Fly Center (China).

    View Publication Page
    08/01/09 | A Drosophila resource of transgenic RNAi lines for neurogenetics.
    Ni J, Liu L, Binari R, Hardy R, Shim H, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H, Villalta C, Laverty TR, Perkins LA, Perrimon N
    Genetics. 2009 Aug;182(4):1089-100. doi: 10.1534/genetics.109.103630

    Conditional expression of hairpin constructs in Drosophila is a powerful method to disrupt the activity of single genes with a spatial and temporal resolution that is impossible, or exceedingly difficult, using classical genetic methods. We previously described a method (Ni et al. 2008) whereby RNAi constructs are targeted into the genome by the phiC31-mediated integration approach using Vermilion-AttB-Loxp-Intron-UAS-MCS (VALIUM), a vector that contains vermilion as a selectable marker, an attB sequence to allow for phiC31-targeted integration at genomic attP landing sites, two pentamers of UAS, the hsp70 core promoter, a multiple cloning site, and two introns. As the level of gene activity knockdown associated with transgenic RNAi depends on the level of expression of the hairpin constructs, we generated a number of derivatives of our initial vector, called the "VALIUM" series, to improve the efficiency of the method. Here, we report the results from the systematic analysis of these derivatives and characterize VALIUM10 as the most optimal vector of this series. A critical feature of VALIUM10 is the presence of gypsy insulator sequences that boost dramatically the level of knockdown. We document the efficacy of VALIUM as a vector to analyze the phenotype of genes expressed in the nervous system and have generated a library of 2282 constructs targeting 2043 genes that will be particularly useful for studies of the nervous system as they target, in particular, transcription factors, ion channels, and transporters.

    View Publication Page