Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Huston Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

3908 Publications

Showing 1-10 of 3908 results
06/15/22 | 2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains2,7-Diaminobenzopyrylium Dyes Are Live-Cell Mitochondrial Stains
Banala S, Tkachuk AN, Patel R, Kumar P, Brown TA, Lavis LD
ACS Bio & Med Chem Au. 2022 Jun 15;2(3):307-12. doi: 10.1021/acsbiomedchemau.1c00068

Small-molecule fluorescent stains enable the imaging of cellular structures without the need for genetic manipulation. Here, we introduce 2,7-diaminobenzopyrylium (DAB) dyes as live-cell mitochondrial stains excited with violet light. This amalgam of the coumarin and rhodamine fluorophore structures yields dyes with high photostability and tunable spectral properties.

View Publication Page
09/15/23 | 3D architecture and a bi-cellular mechanism of touch detection in mechanosensory corpuscle
Yury A. Nikolaev , Luke H. Ziolkowski , Song Pang , Wei-Ping Li , Viktor V. Feketa , C. Shan Xu , Elena O. Gracheva , Sviatoslav N. Bagriantsev
Science Advances. 2023 Sep 15;9(37):eadi4147. doi: 10.1126/sciadv.adi4147

Mechanosensory corpuscles detect transient touch and vibratory signals in the skin of vertebrates, enabling navigation, foraging, and precise manipulation of objects1. The corpuscle core comprises a terminal neurite of a mechanoreceptor afferent, the only known touch-sensing element within corpuscles, surrounded by terminal Schwann cells called lamellar cells (LCs)24. However, the precise corpuscular ultrastructure, and the role of LCs in touch detection are unknown. Here we used enhanced focused ion beam scanning electron microscopy and electron tomography to reveal the three-dimensional architecture of avian Meissner (Grandry) corpuscle5. We show that corpuscles contain a stack of LCs innervated by two afferents, which form large-area contacts with LCs. LCs form tether-like connections with the afferent membrane and contain dense core vesicles which release their content onto the afferent. Furthermore, by performing simultaneous electrophysiological recordings from both cell types, we show that mechanosensitive LCs use calcium influx to trigger action potential firing in the afferent and thus serve as physiological touch sensors in the skin. Our findings suggest a bi-cellular mechanism of touch detection, which comprises the afferent and LCs, likely enables corpuscles to encode the nuances of tactile stimuli.

View Publication Page
04/01/20 | 3D ATAC-PALM: super-resolution imaging of the accessible genome.
Xie L, Dong P, Chen X, Hsieh TS, Banala S, De Marzio M, English BP, Qi Y, Jung SK, Kieffer-Kwon K, Legant WR, Hansen AS, Schulmann A, Casellas R, Zhang B, Betzig E, Lavis LD, Chang HY, Tjian R, Liu Z
Nature Methods. 2020 Apr 01;17(4):430-6. doi: 10.1038/s41592-020-0775-2

To image the accessible genome at nanometer scale in situ, we developed three-dimensional assay for transposase-accessible chromatin-photoactivated localization microscopy (3D ATAC-PALM) that integrates an assay for transposase-accessible chromatin with visualization, PALM super-resolution imaging and lattice light-sheet microscopy. Multiplexed with oligopaint DNA–fluorescence in situ hybridization (FISH), RNA–FISH and protein fluorescence, 3D ATAC-PALM connected microscopy and genomic data, revealing spatially segregated accessible chromatin domains (ACDs) that enclose active chromatin and transcribed genes. Using these methods to analyze genetically perturbed cells, we demonstrated that genome architectural protein CTCF prevents excessive clustering of accessible chromatin and decompacts ACDs. These results highlight 3D ATAC-PALM as a useful tool to probe the structure and organizing mechanism of the genome.

View Publication Page
06/22/17 | 3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse.
Griffié J, Shlomovich L, Williamson DJ, Shannon M, Aaron J, Khuon S, L Burn G, Boelen L, Peters R, Cope AP, Cohen EA, Rubin-Delanchy P, Owen DM
Scientific Reports. 2017 Jun 22;7(1):4077. doi: 10.1038/s41598-017-04450-w

Single-molecule localisation microscopy (SMLM) allows the localisation of fluorophores with a precision of 10-30 nm, revealing the cell's nanoscale architecture at the molecular level. Recently, SMLM has been extended to 3D, providing a unique insight into cellular machinery. Although cluster analysis techniques have been developed for 2D SMLM data sets, few have been applied to 3D. This lack of quantification tools can be explained by the relative novelty of imaging techniques such as interferometric photo-activated localisation microscopy (iPALM). Also, existing methods that could be extended to 3D SMLM are usually subject to user defined analysis parameters, which remains a major drawback. Here, we present a new open source cluster analysis method for 3D SMLM data, free of user definable parameters, relying on a model-based Bayesian approach which takes full account of the individual localisation precisions in all three dimensions. The accuracy and reliability of the method is validated using simulated data sets. This tool is then deployed on novel experimental data as a proof of concept, illustrating the recruitment of LAT to the T-cell immunological synapse in data acquired by iPALM providing ~10 nm isotropic resolution.

View Publication Page
02/01/21 | 3D FIB-SEM reconstruction of microtubule-organelle interaction in whole primary mouse β cells.
Müller A, Schmidt D, Xu CS, Pang S, D'Costa JV, Kretschmar S, Münster C, Kurth T, Jug F, Weigert M, Hess HF, Solimena M
Journal of Cell Biology. 2021 Feb 01;220(2):. doi: 10.1083/jcb.202010039

Microtubules play a major role in intracellular trafficking of vesicles in endocrine cells. Detailed knowledge of microtubule organization and their relation to other cell constituents is crucial for understanding cell function. However, their role in insulin transport and secretion is under debate. Here, we use FIB-SEM to image islet β cells in their entirety with unprecedented resolution. We reconstruct mitochondria, Golgi apparati, centrioles, insulin secretory granules, and microtubules of seven β cells, and generate a comprehensive spatial map of microtubule-organelle interactions. We find that microtubules form nonradial networks that are predominantly not connected to either centrioles or endomembranes. Microtubule number and length, but not microtubule polymer density, vary with glucose stimulation. Furthermore, insulin secretory granules are enriched near the plasma membrane, where they associate with microtubules. In summary, we provide the first 3D reconstructions of complete microtubule networks in primary mammalian cells together with evidence regarding their importance for insulin secretory granule positioning and thus their supportive role in insulin secretion.

View Publication Page
04/01/13 | 3D Haar-like elliptical features for object classification in microscopy.
Amat F, Keller PJ
International Symposium on Biomedical Imaging. 2013 Apr:

Object detection and classification are key tasks in computer vision that can facilitate high-throughput image analysis of microscopy data. We present a set of local image descriptors for three-dimensional (3D) microscopy datasets inspired by the well-known Haar wavelet framework. We add orientation, illumination and scale information by assuming that the neighborhood surrounding points of interests in the image can be described with ellipsoids, and we increase discriminative power by incorporating edge and shape information into the features. The calculation of the local image descriptors is implemented in a Graphics Processing Unit (GPU) in order to reduce computation time to 1 millisecond per object of interest. We present results for cell division detection in 3D time-lapse fluorescence microscopy with 97.6% accuracy.

View Publication Page
12/24/14 | 3D imaging of Sox2 enhancer clusters in embryonic stem cells.
Liu Z, Legant WR, Chen B, Li L, Grimm JB, Lavis LD, Betzig E, Tjian R
eLife. 2014 Dec 24;3:. doi: 10.7554/eLife.04236

Combinatorial cis-regulatory networks encoded in animal genomes represent the foundational gene expression mechanism for directing cell-fate commitment and maintenance of cell identity by transcription factors (TFs). However, the 3D spatial organization of cis-elements and how such sub-nuclear structures influence TF activity remain poorly understood. Here, we combine lattice light-sheet imaging, single-molecule tracking, numerical simulations, and ChIP-exo mapping to localize and functionally probe Sox2 enhancer-organization in living embryonic stem cells. Sox2 enhancers form 3D-clusters that are segregated from heterochromatin but overlap with a subset of Pol II enriched regions. Sox2 searches for specific binding targets via a 3D-diffusion dominant mode when shuttling long-distances between clusters while chromatin-bound states predominate within individual clusters. Thus, enhancer clustering may reduce global search efficiency but enables rapid local fine-tuning of TF search parameters. Our results suggest an integrated model linking cis-element 3D spatial distribution to local-versus-global target search modalities essential for regulating eukaryotic gene transcription.

View Publication Page
05/01/14 | 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy.
Gao L, Shao L, Chen B, Betzig E
Nature Protocols. 2014 May;9:1083-101. doi: 10.1038/nprot.2014.087

3D live imaging is important for a better understanding of biological processes, but it is challenging with current techniques such as spinning-disk confocal microscopy. Bessel beam plane illumination microscopy allows high-speed 3D live fluorescence imaging of living cellular and multicellular specimens with nearly isotropic spatial resolution, low photobleaching and low photodamage. Unlike conventional fluorescence imaging techniques that usually have a unique operation mode, Bessel plane illumination has several modes that offer different performance with different imaging metrics. To achieve optimal results from this technique, the appropriate operation mode needs to be selected and the experimental setting must be optimized for the specific application and associated sample properties. Here we explain the fundamental working principles of this technique, discuss the pros and cons of each operational mode and show through examples how to optimize experimental parameters. We also describe the procedures needed to construct, align and operate a Bessel beam plane illumination microscope by using our previously reported system as an example, and we list the necessary equipment to build such a microscope. Assuming all components are readily available, it would take a person skilled in optical instrumentation \~{}1 month to assemble and operate a microscope according to this protocol.

View Publication Page
Kainmueller Lab
07/26/09 | 3D reconstruction of the human rib cage from 2D projection images using a statistical shape model.
Dworzak J, Lamecker H, von Berg J, Klinder T, Lorenz C, Kainmüller D, Seim H, Hege H, Zachow S
International journal of computer assisted radiology and surgery. 2010 Mar;5(2):111-24. doi: 10.1007/s11548-009-0390-2

PURPOSE: This paper describes an approach for the three-dimensional (3D) shape and pose reconstruction of the human rib cage from few segmented two-dimensional (2D) projection images. Our work is aimed at supporting temporal subtraction techniques of subsequently acquired radiographs by establishing a method for the assessment of pose differences in sequences of chest radiographs of the same patient.

METHODS: The reconstruction method is based on a 3D statistical shape model (SSM) of the rib cage, which is adapted to binary 2D projection images of an individual rib cage. To drive the adaptation we minimize a distance measure that quantifies the dissimilarities between 2D projections of the 3D SSM and the projection images of the individual rib cage. We propose different silhouette-based distance measures and evaluate their suitability for the adaptation of the SSM to the projection images.

RESULTS: An evaluation was performed on 29 sets of biplanar binary images (posterior-anterior and lateral). Depending on the chosen distance measure, our experiments on the combined reconstruction of shape and pose of the rib cages yield reconstruction errors from 2.2 to 4.7 mm average mean 3D surface distance. Given a geometry of an individual rib cage, the rotational errors for the pose reconstruction range from 0.1 degrees to 0.9 degrees.

CONCLUSIONS: The results show that our method is suitable for the estimation of pose differences of the human rib cage in binary projection images. Thus, it is able to provide crucial 3D information for registration during the generation of 2D subtraction images.

View Publication Page
04/01/10 | 3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes.
Moussavi F, Heitz G, Amat F, Comolli LR, Koller D, Horowitz M
Journal of Structural Biology. 2010 Apr;170(1):134-45. doi: 10.1016/j.jsb.2009.12.015

Cryogenic electron tomography (cryo-ET) has gained increasing interest in recent years due to its ability to image whole cells and subcellular structures in 3D at nanometer resolution in their native environment. However, due to dose restrictions and the inability to acquire high tilt angle images, the reconstructed volumes are noisy and have missing information. Thus, features are unreliable, and precision extraction of the cell boundary is difficult, manual and time intensive. This paper presents an efficient recursive algorithm called BLASTED (Boundary Localization using Adaptive Shape and Texture Discovery) to automatically extract the cell boundary using a conditional random field (CRF) framework in which boundary points and shape are jointly inferred. The algorithm learns the texture of the boundary region progressively, and uses a global shape model and shape-dependent features to propose candidate boundary points on a slice of the membrane. It then updates the shape of that slice by accepting the appropriate candidate points using local spatial clustering, the global shape model, and trained boosted texture classifiers. The BLASTED algorithm segmented the cell membrane over an average of 93% of the length of the cell in 19 difficult cryo-ET datasets.

View Publication Page