Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

232 Publications

Showing 61-70 of 232 results
Your Criteria:
    09/21/18 | Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.
    Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NC
    Nature Communications. 2018 Sep 21;9(1):3840. doi: 10.1038/s41467-018-06298-8

    The bacterial type III secretion system, or injectisome, is a syringe shaped nanomachine essential for the virulence of many disease causing Gram-negative bacteria. At the core of the injectisome structure is the needle complex, a continuous channel formed by the highly oligomerized inner and outer membrane hollow rings and a polymerized helical needle filament which spans through and projects into the infected host cell. Here we present the near-atomic resolution structure of a needle complex from the prototypical Salmonella Typhimurium SPI-1 type III secretion system, with local masking protocols allowing for model building and refinement of the major membrane spanning components of the needle complex base in addition to an isolated needle filament. This work provides significant insight into injectisome structure and assembly and importantly captures the molecular basis for substrate induced gating in the giant outer membrane secretin portal family.

    View Publication Page
    07/01/18 | Cryo-EM structure of an essential Plasmodium vivax invasion complex.
    Gruszczyk J, Huang RK, Chan L, Menant S, Hong C, Murphy JM, Mok Y, Griffin MD, Pearson RD, Wong W, Cowman AF, Yu Z, Tham W
    Nature. 2018 Jul;559(7712):135-139. doi: 10.1038/s41586-018-0249-1

    Plasmodium vivax is the most widely distributed malaria parasite that infects humans. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P. vivax reticulocyte-binding protein 2b (PvRBP2b) and transferrin receptor 1 (TfR1). TfR1-deficient erythroid cells are refractory to invasion by P. vivax, and anti-PvRBP2b monoclonal antibodies inhibit reticulocyte binding and block P. vivax invasion in field isolates. Here we report a high-resolution cryo-electron microscopy structure of a ternary complex of PvRBP2b bound to human TfR1 and transferrin, at 3.7 Å resolution. Mutational analyses show that PvRBP2b residues involved in complex formation are conserved; this suggests that antigens could be designed that act across P. vivax strains. Functional analyses of TfR1 highlight how P. vivax hijacks TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron. Crystal and solution structures of PvRBP2b in complex with antibody fragments characterize the inhibitory epitopes. Our results establish a structural framework for understanding how P. vivax reticulocyte-binding protein engages its receptor and the molecular mechanism of inhibitory monoclonal antibodies, providing important information for the design of novel vaccine candidates.

    View Publication Page
    07/13/18 | Cryo-EM structure of the polycystin 2-l1 ion channel.
    Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE
    eLife. 2018 Jul 13;7:. doi: 10.7554/eLife.36931

    We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

    View Publication Page
    11/11/18 | Cryo-EM structure of the receptor-activated TRPC5 ion channel at 2.9 angstrom resolution.
    Jingjing Duan , Jian Li , Gui-Lan Chen , Bo Zeng , Kechen Xie , Xiaogang Peng , Wei Zhou , Jianing Zhong , Yixing Zhang , Jie Xu , Changhu Xue , Lan Zhu , Wei Liu , Xiao-Li Tian , Jianbin Wang , David E. Clapham , Zongli Li , Jin Zhang

    The transient receptor potential canonical subfamily member 5 (TRPC5) is a non-selective calcium-permeant cation channel. As a depolarizing channel, its function is studied in the central nervous system and kidney. TRPC5 forms heteromultimers with TRPC1, but also forms homomultimers. It can be activated by reducing agents through reduction of the extracellular disulfide bond. Here we present the 2.9 Å resolution electron cryo-microscopy (cryo-EM) structure of TRPC5. The structure of TRPC5 in its apo state is partially open, which may be related to the weak activation of TRPC5 in response to extracellular pH. We also report the conserved negatively charged residues of the cation binding site located in the hydrophilic pocket between S2 and S3. Comparison of the TRPC5 structure to previously determined structures of other TRPC and TRP channels reveals differences in the extracellular pore domain and in the length of the S3 helix. Together, these results shed light on the structural features that contribute to the specific activation mechanism of the receptor-activated TRPC5.

    View Publication Page
    Gonen Lab
    06/01/18 | Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
    Lei H, Ma J, Sanchez Martinez S, Gonen T
    Nature Structural & Molecular Biology. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2

    Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.

    View Publication Page
    07/10/18 | CYK-4 functions independently of its centralspindlin partner ZEN-4 to cellularize oocytes in germline syncytia
    Lee K, Green RA, Gutierrez E, Gomez-Cavazos JS, Kolotuev I, Wang S, Desai A, Groisman A, Oegema K, Balasubramanian MK, Akhmanova A
    eLife. 07/2018;7:e36919. doi: 10.7554/eLife.36919

    Throughout metazoans, germ cells undergo incomplete cytokinesis to form syncytia connected by intercellular bridges. Gamete formation ultimately requires bridge closure, yet how bridges are reactivated to close is not known. The most conserved bridge component is centralspindlin, a complex of the Rho family GTPase-activating protein (GAP) CYK-4/MgcRacGAP and the microtubule motor ZEN-4/kinesin-6. Here, we show that oocyte production by the syncytial \textitCaenorhabditis elegans germline requires CYK-4 but not ZEN-4, which contrasts with cytokinesis, where both are essential. Longitudinal imaging after conditional inactivation revealed that CYK-4 activity is important for oocyte cellularization, but not for the cytokinesis-like events that generate syncytial compartments. CYK-4’s lipid-binding C1 domain and the GTPase-binding interface of its GAP domain were both required to target CYK-4 to intercellular bridges and to cellularize oocytes. These results suggest that the conserved C1-GAP region of CYK-4 constitutes a targeting module required for closure of intercellular bridges in germline syncytia.

    View Publication Page
    Zlatic LabTruman Lab
    03/28/18 | Dedicated photoreceptor pathways in Drosophila larvae mediate navigation by processing either spatial or temporal cues.
    Humberg T, Bruegger P, Afonso B, Zlatic M, Truman JW, Gershow M, Samuel A, Sprecher SG
    Nature Communications. 2018 Mar 28;9(1):1260. doi: 10.1038/s41467-018-03520-5

    To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.

    View Publication Page
    09/05/18 | Defective cortex glia plasma membrane structure underlies light-induced epilepsy in mutants.
    Kunduri G, Turner-Evans D, Konya Y, Izumi Y, Nagashima K, Lockett S, Holthuis J, Bamba T, Acharya U, Acharya JK
    Proceedings of the National Academy of Sciences of the United States of America. 2018 Sep 05;115(38):E8919-28. doi: 10.1073/pnas.1808463115

    Seizures induced by visual stimulation (photosensitive epilepsy; PSE) represent a common type of epilepsy in humans, but the molecular mechanisms and genetic drivers underlying PSE remain unknown, and no good genetic animal models have been identified as yet. Here, we show an animal model of PSE, in , owing to defective cortex glia. The cortex glial membranes are severely compromised in ceramide phosphoethanolamine synthase ()-null mutants and fail to encapsulate the neuronal cell bodies in the neuronal cortex. Expression of human sphingomyelin synthase 1, which synthesizes the closely related ceramide phosphocholine (sphingomyelin), rescues the cortex glial abnormalities and PSE, underscoring the evolutionarily conserved role of these lipids in glial membranes. Further, we show the compromise in plasma membrane structure that underlies the glial cell membrane collapse in mutants and leads to the PSE phenotype.

    View Publication Page
    11/19/18 | Detecting and Correcting False Transients in Calcium Imaging
    Gauthier JL, Koay SA, Nieh EH, Tank DW, Pillow JW, Charles AS
    bioRxiv. 11/2018:. doi: 10.1101/473470

    Population recordings of calcium activity are a major source of insight into neural function. Large dataset sizes often require automated methods, but automation can introduce errors that are difficult to detect. Here we show that automatic time course estimation can sometimes lead to significant misattribution errors, in which fluorescence is ascribed to the wrong cell. Misattribution arises when the shapes of overlapping cells are imperfectly defined, or when entire cells or processes are not identified, and misattribution can even be produced by methods specifically designed to handle overlap. To diagnose this problem, we develop a transient-by-transient metric and a visualization tool that allow users to quickly assess the degree of misattribution in large populations. To filter out misattribution, we also design a robust estimator that explicitly accounts for contaminating signals in a generative model. Our methods can be combined with essentially any cell finding technique, empowering users to diagnose and correct at large scale a problem that has the potential to significantly alter scientific conclusions.

    View Publication Page
    10/11/18 | Development of 2-colour and 3D SMLM data analysis methods for fibrous spatial point patterns.
    Peters R, Griffié J, Williamson D, Aaron J, Khuon S, Owen D
    Journal of Physics D: Applied Physics. 2018 Oct 11;52(1):1. doi: 10.1088/1361-6463/aae7ac

    Abstract ingle molecule localisation microscopy (SMLM), experimentally achieved over a decade ago, has become a routinely used analytical tool across the life sciences. Synergistic advances in probe chemistry, optical physics and data analysis has propelled SMLM into the quantitative realm, enabling unprecedented access to the cellular machinery at the nanoscale. In its early years, SMLM primarily served as a platform for impressive rendered images of sub diffraction scale structures, however more recently a shift towards interrogating SMLM point pattern data in a robust mathematical framework has occurred. A prevalent theme in the SMLM field is the need for quantitative analytical methods, to better understand the underlying processes on which SMLM reports and to extract statistically valid biological insights. Whilst some forms of post processing analytics, for example cluster analysis, have been widely studied, others such as fibre analysis remain in their infancy. Here, we review the current state of the art of cluster analysis and fibre analysis and present new methods for their implementation in both 3D SMLM data sets and multi-colour data.

    View Publication Page