Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Koyama Lab / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block

Publication Date

facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

196 Publications

Showing 61-70 of 196 results
Your Criteria:
    12/02/20 | Cryo-EM structure of the inhibited (10S) form of myosin II.
    Yang S, Tiwari P, Lee KH, Sato O, Ikebe M, Padrón R, Craig R
    Nature. 2020 Dec 02;588(7838):521-25. doi: 10.1038/s41586-020-3007-0

    Myosin II is the motor protein that enables muscle cells to contract and nonmuscle cells to move and change shape. The molecule has two identical heads attached to an elongated tail, and can exist in two conformations: 10S and 6S, named for their sedimentation coefficients. The 6S conformation has an extended tail and assembles into polymeric filaments, which pull on actin filaments to generate force and motion. In 10S myosin, the tail is folded into three segments and the heads bend back and interact with each other and the tail, creating a compact conformation in which ATPase activity, actin activation and filament assembly are all highly inhibited. This switched-off structure appears to function as a key energy-conserving storage molecule in muscle and nonmuscle cells, which can be activated to form functional filaments as needed-but the mechanism of its inhibition is not understood. Here we have solved the structure of smooth muscle 10S myosin by cryo-electron microscopy with sufficient resolution to enable improved understanding of the function of the head and tail regions of the molecule and of the key intramolecular contacts that cause inhibition. Our results suggest an atomic model for the off state of myosin II, for its activation and unfolding by phosphorylation, and for understanding the clustering of disease-causing mutations near sites of intramolecular interaction.

    View Publication Page
    11/01/20 | Dense and pleiotropic regulatory information in a developmental enhancer.
    Fuqua T, Jordan J, van Breugel ME, Halavatyi A, Tischer C, Polidoro P, Abe N, Tsai A, Mann RS, Stern DL, Crocker J
    Nature. 2020 Nov 01;587(7833):235-39. doi: 10.1038/s41586-020-2816-5

    Changes in gene regulation underlie much of phenotypic evolution. However, our understanding of the potential for regulatory evolution is biased, because most evidence comes from either natural variation or limited experimental perturbations. Using an automated robotics pipeline, we surveyed an unbiased mutation library for a developmental enhancer in Drosophila melanogaster. We found that almost all mutations altered gene expression and that parameters of gene expression-levels, location, and state-were convolved. The widespread pleiotropic effects of most mutations may constrain the evolvability of developmental enhancers. Consistent with these observations, comparisons of diverse Drosophila larvae revealed apparent biases in the phenotypes influenced by the enhancer. Developmental enhancers may encode a higher density of regulatory information than has been appreciated previously, imposing constraints on regulatory evolution.

    View Publication Page
    12/01/20 | Dense neuronal reconstruction through X-ray holographic nano-tomography.
    Kuan AT, Phelps JS, Thomas LA, Nguyen TM, Han J, Chen C, Azevedo AW, Tuthill JC, Funke J, Cloetens P, Pacureanu A, Lee WA
    Nature Neuroscience. 2020 Dec -1;23(12):1637-43. doi: 10.1038/s41593-020-0704-9

    Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery.

    View Publication Page
    05/14/20 | Detecting the Starting Frame of Actions in Video
    Kwak IS, Guo J, Hantman A, Branson K, Kriegman D
    2020 IEEE Winter Conference on Applications of Computer Vision (WACV). 2020 May 14:. doi: 10.1109/WACV45572.202010.1109/WACV45572.2020.9093405

    In this work, we address the problem of precisely localizing key frames of an action, for example, the precise time that a pitcher releases a baseball, or the precise time that a crowd begins to applaud. Key frame localization is a largely overlooked and important action-recognition problem, for example in the field of neuroscience, in which we would like to understand the neural activity that produces the start of a bout of an action. To address this problem, we introduce a novel structured loss function that properly weights the types of errors that matter in such applications: it more heavily penalizes extra and missed action start detections over small misalignments. Our structured loss is based on the best matching between predicted and labeled action starts. We train recurrent neural networks (RNNs) to minimize differentiable approximations of this loss. To evaluate these methods, we introduce the Mouse Reach Dataset, a large, annotated video dataset of mice performing a sequence of actions. The dataset was collected and labeled by experts for the purpose of neuroscience research. On this dataset, we demonstrate that our method outperforms related approaches and baseline methods using an unstructured loss.

    View Publication Page
    07/01/20 | Dielectric confinement and excitonic effects in two-dimensional nanoplatelets.
    Ji B, Rabani E, Efros AL, Vaxenburg R, Ashkenazi O, Azulay D, Banin U, Millo O
    ACS Nano. 2020 Jul 01:. doi: 10.1021/acsnano.0c01950

    Quasi-two-dimensional (2D) semiconductor nanoplatelets manifest strong quantum confinement with exceptional optical characteristics of narrow photoluminescence peaks with energies tunable by thickness with monolayer precision. We employed scanning tunneling spectroscopy (STS) in conjunction with optical measurements to probe the thickness-dependent band gap and density of excited states in a series of CdSe nanoplatelets. The tunneling spectra, measured in the double-barrier tunnel junction configuration, reveal the effect of quantum confinement on the band gap taking place mainly through a blue-shift of the conduction band edge, along with a signature of 2D electronic structure intermixed with finite lateral-size and/or defects effects. The STS fundamental band gaps are larger than the optical gaps as expected from the contributions of exciton binding in the absorption, as confirmed by theoretical calculations. The calculations also point to strong valence band mixing between the light- and split-off hole levels. Strikingly, the energy difference between the heavy-hole and light-hole levels in the tunneling spectra are significantly larger than the corresponding values extracted from the absorption spectra. Possible explanations for this, including an interplay of nanoplatelet charging, dielectric confinement, and difference in exciton binding energy for light and heavy holes, are analyzed and discussed.

    View Publication Page
    12/02/20 | Distributed control of motor circuits for backward walking in Drosophila.
    Feng K, Sen R, minegishi r, Dübbert M, Bockemühl T, Büschges A, Dickson BJ
    Nature Communications. 2020 Dec 02;11(1):6166. doi: 10.1038/s41467-020-19936-x

    How do descending inputs from the brain control leg motor circuits to change how an animal walks? Conceptually, descending neurons are thought to function either as command-type neurons, in which a single type of descending neuron exerts a high-level control to elicit a coordinated change in motor output, or through a population coding mechanism, whereby a group of neurons, each with local effects, act in combination to elicit a global motor response. The Drosophila Moonwalker Descending Neurons (MDNs), which alter leg motor circuit dynamics so that the fly walks backwards, exemplify the command-type mechanism. Here, we identify several dozen MDN target neurons within the leg motor circuits, and show that two of them mediate distinct and highly-specific changes in leg muscle activity during backward walking: LBL40 neurons provide the hindleg power stroke during stance phase; LUL130 neurons lift the legs at the end of stance to initiate swing. Through these two effector neurons, MDN directly controls both the stance and swing phases of the backward stepping cycle. These findings suggest that command-type descending neurons can also operate through the distributed control of local motor circuits.

    View Publication Page
    12/16/20 | DNA damage alters nuclear mechanics through chromatin reorganization.
    Dos Santos Á, Cook AW, Gough RE, Schilling M, Olszok NA, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP
    Nucleic Acids Research. 2020 Dec 16:. doi: 10.1093/nar/gkaa1202

    DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.

    View Publication Page
    03/19/20 | Eco-evolutionary significance of "loners".
    Rossine FW, Martinez-Garcia R, Sgro AE, Gregor T, Tarnita CE
    PLoS Biol. 03/2020;18(3):e3000642. doi: 10.1371/journal.pbio.3000642

    Loners-individuals out of sync with a coordinated majority-occur frequently in nature. Are loners incidental byproducts of large-scale coordination attempts, or are they part of a mosaic of life-history strategies? Here, we provide empirical evidence of naturally occurring heritable variation in loner behavior in the model social amoeba Dictyostelium discoideum. We propose that Dictyostelium loners-cells that do not join the multicellular life stage-arise from a dynamic population-partitioning process, the result of each cell making a stochastic, signal-based decision. We find evidence that this imperfectly synchronized multicellular development is affected by both abiotic (environmental porosity) and biotic (signaling) factors. Finally, we predict theoretically that when a pair of strains differing in their partitioning behavior coaggregate, cross-signaling impacts slime-mold diversity across spatiotemporal scales. Our findings suggest that loners could be critical to understanding collective and social behaviors, multicellular development, and ecological dynamics in D. discoideum. More broadly, across taxa, imperfect coordination of collective behaviors might be adaptive by enabling diversification of life-history strategies.

    View Publication Page
    05/01/20 | Effect of circuit structure on odor representation in the insect olfactory system.
    Rajagopalan A, Assisi C
    eNeuro. 2020 May;7(3):1-12. doi: 10.1523/ENEURO.0130-19.2020

    In Neuroscience, the structure of a circuit has often been used to intuit function - an inversion of Louis Kahn's famous dictum, `Form follows function' (Kristan and Katz 2006). However, different brain networks may utilize different network architectures to solve the same problem. The olfactory circuits of two insects, the Locust, and the fruit fly, , serve the same function - to identify and discriminate odors. The neural circuitry that achieves this shows marked structural differences. Projection neurons (PN) in the antennal lobe (AL) innervate Kenyon cells (KC) of the mushroom body (MB). In locust, each KC receives inputs from ∼50% PNs, a scheme that maximizes the difference between inputs to any two of ∼50,000 KCs. In contrast, in drosophila, this number is only 5% and appears sub-optimal. Using a computational model of the olfactory system, we show the activity of KCs is sufficiently high-dimensional that it can separate similar odors regardless of the divergence of PN-KC connections. However, when temporal patterning encodes odor attributes, dense connectivity outperforms sparse connections.Increased separability comes at the cost of reliability. The disadvantage of sparse connectivity can be mitigated by incorporating other aspects of circuit architecture seen in drosophila. Our simulations predict that drosophila and locust circuits lie at different ends of a continuum where the drosophila gives up on the ability to resolve similar odors to generalize across varying environments, while the locust separates odor representations but risks misclassifying noisy variants of the same odor. How does the structure of a network affect its function? We address this question in the context of two olfactory systems that serve the same function, to distinguish the attributes of different odorants, but do so using markedly distinct architectures. In the locust, the probability of connections between projection neurons and Kenyon cells - a layer downstream - is nearly 50%. In contrast, this number is merely 5% in drosophila. We developed computational models of these networks to understand the relative advantages of each connectivity. Our analysis reveals that the two systems exist along a continuum of possibilities that balance two conflicting goals - separating the representations of similar odors while grouping together noisy variants of the same odor.

    View Publication Page
    08/03/20 | Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures.
    Tesileanu T, Conte MM, Briguglio JJ, Hermundstad AM, Victor JD, Balasubramanian V
    eLife. 2020 Aug 3;9:. doi: 10.7554/eLife.54347

    Previously, in (Hermundstad et al., 2014), we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error < 0:13).

    View Publication Page