Filter
Associated Lab
- 43418 (2) Apply 43418 filter
- 43427 (1) Apply 43427 filter
- 43430 (2) Apply 43430 filter
- Ahrens Lab (7) Apply Ahrens Lab filter
- Aso Lab (2) Apply Aso Lab filter
- Baker Lab (2) Apply Baker Lab filter
- Betzig Lab (12) Apply Betzig Lab filter
- Bock Lab (1) Apply Bock Lab filter
- Branson Lab (5) Apply Branson Lab filter
- Card Lab (3) Apply Card Lab filter
- Cardona Lab (8) Apply Cardona Lab filter
- Dickson Lab (4) Apply Dickson Lab filter
- Druckmann Lab (3) Apply Druckmann Lab filter
- Dudman Lab (3) Apply Dudman Lab filter
- Eddy/Rivas Lab (1) Apply Eddy/Rivas Lab filter
- Egnor Lab (1) Apply Egnor Lab filter
- Fetter Lab (6) Apply Fetter Lab filter
- Fitzgerald Lab (1) Apply Fitzgerald Lab filter
- Freeman Lab (4) Apply Freeman Lab filter
- Funke Lab (2) Apply Funke Lab filter
- Gonen Lab (8) Apply Gonen Lab filter
- Grigorieff Lab (6) Apply Grigorieff Lab filter
- Harris Lab (5) Apply Harris Lab filter
- Hess Lab (2) Apply Hess Lab filter
- Jayaraman Lab (3) Apply Jayaraman Lab filter
- Ji Lab (4) Apply Ji Lab filter
- Kainmueller Lab (3) Apply Kainmueller Lab filter
- Karpova Lab (3) Apply Karpova Lab filter
- Keleman Lab (1) Apply Keleman Lab filter
- Keller Lab (6) Apply Keller Lab filter
- Lavis Lab (13) Apply Lavis Lab filter
- Lee (Albert) Lab (1) Apply Lee (Albert) Lab filter
- Leonardo Lab (2) Apply Leonardo Lab filter
- Li Lab (2) Apply Li Lab filter
- Lippincott-Schwartz Lab (9) Apply Lippincott-Schwartz Lab filter
- Liu (Zhe) Lab (4) Apply Liu (Zhe) Lab filter
- Looger Lab (10) Apply Looger Lab filter
- Magee Lab (2) Apply Magee Lab filter
- Menon Lab (2) Apply Menon Lab filter
- Murphy Lab (2) Apply Murphy Lab filter
- Pachitariu Lab (2) Apply Pachitariu Lab filter
- Pastalkova Lab (1) Apply Pastalkova Lab filter
- Pavlopoulos Lab (3) Apply Pavlopoulos Lab filter
- Pedram Lab (1) Apply Pedram Lab filter
- Podgorski Lab (1) Apply Podgorski Lab filter
- Reiser Lab (3) Apply Reiser Lab filter
- Romani Lab (2) Apply Romani Lab filter
- Rubin Lab (3) Apply Rubin Lab filter
- Saalfeld Lab (3) Apply Saalfeld Lab filter
- Schreiter Lab (2) Apply Schreiter Lab filter
- Simpson Lab (1) Apply Simpson Lab filter
- Singer Lab (5) Apply Singer Lab filter
- Spruston Lab (6) Apply Spruston Lab filter
- Stern Lab (7) Apply Stern Lab filter
- Sternson Lab (3) Apply Sternson Lab filter
- Stringer Lab (1) Apply Stringer Lab filter
- Svoboda Lab (8) Apply Svoboda Lab filter
- Tervo Lab (2) Apply Tervo Lab filter
- Tillberg Lab (1) Apply Tillberg Lab filter
- Tjian Lab (3) Apply Tjian Lab filter
- Truman Lab (11) Apply Truman Lab filter
- Turaga Lab (2) Apply Turaga Lab filter
- Turner Lab (1) Apply Turner Lab filter
- Wu Lab (1) Apply Wu Lab filter
- Zlatic Lab (2) Apply Zlatic Lab filter
Associated Project Team
- Fly Functional Connectome (2) Apply Fly Functional Connectome filter
- Fly Olympiad (1) Apply Fly Olympiad filter
- FlyEM (1) Apply FlyEM filter
- GENIE (2) Apply GENIE filter
- MouseLight (2) Apply MouseLight filter
- Tool Translation Team (T3) (1) Apply Tool Translation Team (T3) filter
- Transcription Imaging (11) Apply Transcription Imaging filter
Publication Date
- December 2016 (18) Apply December 2016 filter
- November 2016 (15) Apply November 2016 filter
- October 2016 (22) Apply October 2016 filter
- September 2016 (11) Apply September 2016 filter
- August 2016 (13) Apply August 2016 filter
- July 2016 (15) Apply July 2016 filter
- June 2016 (25) Apply June 2016 filter
- May 2016 (23) Apply May 2016 filter
- April 2016 (13) Apply April 2016 filter
- March 2016 (15) Apply March 2016 filter
- February 2016 (23) Apply February 2016 filter
- January 2016 (14) Apply January 2016 filter
- Remove 2016 filter 2016
Type of Publication
207 Publications
Showing 111-120 of 207 resultsTwo-photon imaging and optogenetic stimulation rely on high illumination powers, particularly for state-of-the-art applications that target deeper structures, achieve faster measurements, or probe larger brain areas. However, little information is available on heating and resulting damage induced by high-power illumination in the brain. Here we used thermocouple probes and quantum dot nanothermometers to measure temperature changes induced by two-photon microscopy in the neocortex of awake and anaesthetized mice. We characterized heating as a function of wavelength, exposure time, and distance from the center of illumination. Although total power is highest near the surface of the brain, heating was most severe hundreds of microns below the focal plane, due to heat dissipation through the cranial window. Continuous illumination of a 1mm2 area produced a peak temperature increase of approximately 1.8°C/100mW. Continuous illumination with powers above 250 mW induced lasting damage, detected with immunohistochemistry against Iba1, GFAP, heat shock proteins, and activated Caspase-3. Higher powers were usable in experiments with limited duty ratios, suggesting an approach to mitigate damage in high-power microscopy experiments.
Frealign is a software tool designed to process electron microscope images of single molecules and complexes to obtain reconstructions at the highest possible resolution. It provides a number of refinement parameters and options that allow users to tune their refinement to achieve specific goals, such as masking to classify selected regions within a particle, control over the refinement of specific alignment parameters to accommodate various data collection schemes, refinement of pseudosymmetric particles, and generation of initial maps. This chapter provides a general overview of Frealign functions and a more detailed guide to using Frealign in typical scenarios.
Hordes of tourists flock to Washington, D.C. every spring to see the cherry trees blossom. Once in the city, they must find their way to the Tidal Basin where the Japanese trees grow. Fortunately, a number of visual landmarks can help them to navigate. In 1910, the United States Congress passed The Height of Buildings Act, limiting the elevation of commercial and residential structures in D.C. to 130 feet. Thus, the 555-foot-tall Washington Monument often looms large against the horizon, serving as an anchor point to help set the tourists' sense of direction. Once their heading is set, they can lose sight of the monument behind buildings or groups of tall Scandinavian visitors and still use their internal compass to navigate to the Basin. This compass keeps track of their paces and turns and updates their sense of where they are and where they need to go. Yet while their heading informs their actions, it does not dictate them. Tourists who have been to D.C. in the past can, for example, use remembered views to alter their routes to avoid crowds. On an even finer scale, their leg movements also depend on their current state - they might increase the frequency and length of their strides if hunger pangs compete with their desire to see cherry blossoms, for example. The way in which these disparate cues and motivations influence exploration is a neuroscience mystery across creatures large and small.
Connectomics-the study of how neurons wire together in the brain-is at the forefront of modern neuroscience research. However, many connectomics studies are limited by the time and precision needed to correctly segment large volumes of electron microscopy (EM) image data. We present here a semi-automated segmentation pipeline using freely available software that can significantly decrease segmentation time for extracting both nuclei and cell bodies from EM image volumes.
Climbing over chasms larger than step size is vital to fruit flies, since foraging and mating are achieved while walking. Flies avoid futile climbing attempts by processing parallax-motion vision to estimate gap width. To identify neuronal substrates of climbing control, we screened a large collection of fly lines with temporarily inactivated neuronal populations in a novel high-throughput assay described here. The observed climbing phenotypes were classified; lines in each group are reported. Selected lines were further analysed by high-resolution video cinematography. One striking class of flies attempts to climb chasms of unsurmountable width; expression analysis guided us to C2 optic-lobe interneurons. Inactivation of C2 or the closely related C3 neurons with highly specific intersectional driver lines consistently reproduced hyperactive climbing whereas strong or weak artificial depolarization of C2/C3 neurons strongly or mildly decreased climbing frequency. Contrast-manipulation experiments support our conclusion that C2/C3 neurons are part of the distance-evaluation system.
The physiology of N-methyl-d-aspartate (NMDA) receptors is fundamental to brain development and function. NMDA receptors are ionotropic glutamate receptors that function as heterotetramers composed mainly of GluN1 and GluN2 subunits. Activation of NMDA receptors requires binding of neurotransmitter agonists to a ligand-binding domain (LBD) and structural rearrangement of an amino-terminal domain (ATD). Recent crystal structures of GluN1-GluN2B NMDA receptors bound to agonists and an allosteric inhibitor, ifenprodil, represent the allosterically inhibited state. However, how the ATD and LBD move to activate the NMDA receptor ion channel remains unclear. Here we applied X-ray crystallography, single-particle electron cryomicroscopy and electrophysiology to rat NMDA receptors to show that, in the absence of ifenprodil, the bi-lobed structure of GluN2 ATD adopts an open conformation accompanied by rearrangement of the GluN1-GluN2 ATD heterodimeric interface, altering subunit orientation in the ATD and LBD and forming an active receptor conformation that gates the ion channel.
The brain is a network of neurons, one that generates behaviour, and knowing the former is crucial to understanding the latter. Identifying the exact network of synaptic connections, or connectome, of the fly's central nervous system is now a major objective in Drosophila neurobiology, one that has been initiated in several laboratories, especially the Janelia Research Campus of the Howard Hughes Medical Institute. Progress is most advanced in the optic neuropiles of the visual system. The effort to derive a connectome from these and other neuropile regions is proceeding by various methods of electron microscopy, especially focused-ion beam milling scanning electron microscopy, and relies upon - but is to be carefully distinguished from - published light microscopic methods that reveal the projections of genetically labelled cell types. The latter reveal those neurons that come into close proximity and are therefore candidate synaptic partners. Synaptic partnerships are not in fact reliably revealed by such candidate pairs, anatomical connections often revealing unexpected pathways. Synaptic partnerships identified from ultrastructural features provide a strong heuristic basis to interpret not only functional interactions between identified neurons, but also a powerful means to predict such interactions, and suggest functional pathways not readily predicted from existing experimental evidence. The analysis of circuit function may proceed cell by cell, by examining the behavioural outcome of either interrupting or restoring function to any one element in an anatomically defined circuit, but can be foiled by degeneracy in pathway elements. Circuit information can also be used to identify and analyse circuit motifs, and their role in higher-order network properties. These attempts in Drosophila anticipate parallel attempts in other systems, notably the inner plexiform layer of the vertebrate retina, and augment the one complete connectome already available to us, that available for 30 years in the nematode Caenorhabditis elegans.
Proper functioning of organelles such as the ER or the Golgi apparatus requires luminal accumulation of Ca(2+) at high concentrations. Here we describe a ratiometric low-affinity Ca(2+) sensor of the GFP-aequorin protein (GAP) family optimized for measurements in high-Ca(2+) concentration environments. Transgenic animals expressing the ER-targeted sensor allowed monitoring of Ca(2+) signals inside the organelle. The use of the sensor was demonstrated under three experimental paradigms: (1) ER Ca(2+) oscillations in cultured astrocytes, (2) ex vivo functional mapping of cholinergic receptors triggering ER Ca(2+) release in acute hippocampal slices from transgenic mice, and (3) in vivo sarcoplasmic reticulum Ca(2+) dynamics in the muscle of transgenic flies. Our results provide proof of the suitability of the new biosensors to monitor Ca(2+) dynamics inside intracellular organelles under physiological conditions and open an avenue to explore complex Ca(2+) signaling in animal models of health and disease.
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.