Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_secondary_menu | block
janelia7_blocks-janelia7_fake_breadcrumb | block
Lavis Lab / Publications
general_search_page-panel_pane_1 | views_panes

12 Publications

Showing 11-12 of 12 results
Your Criteria:
    02/14/18 | Synthetic and genetically encoded fluorescent neural activity indicators.
    Deo C, Lavis LD
    Current Opinion in Neurobiology. 2018 Feb 14;50:101-108. doi: 10.1016/j.conb.2018.01.003

    The ultimate goal of neuroscience is to relate the complex activity of cells and cell-networks to behavior and cognition. This requires tools and techniques to visualize neuronal activity. Fluorescence microscopy is an ideal tool to measure activity of cells in the brain due to the high sensitivity of the technique and the growing portfolio of optical hardware and fluorescent sensors. Here, we give a chemist's perspective on the recent progress of fluorescent activity indicators that enable the measurement of cellular events in the living brain. We discuss advances in both chemical and genetically encoded sensors and look forward to hybrid indicators, which incorporate synthetic organic dyes into genetically encoded protein constructs.

    View Publication Page
    12/10/18 | Whole-cell, 3D and multi-color STED imaging with exchangeable fluorophores.
    Spahn C, Grimm JB, Lavis LD, Lampe M, Heilemann M
    Nano Letters. 2018 Dec 10;19(1):500-5. doi: 10.1021/acs.nanolett.8b04385

    We demonstrate STED microscopy of whole bacterial and eukaryotic cells using fluorogenic labels that reversibly bind to their target structure. A constant exchange of labels guarantees the removal of photobleached fluorophores and their replacement by intact fluorophores, thereby circumventing bleaching-related limitations of STED super-resolution imaging. We achieve a constant labeling density and demonstrate a fluorescence signal for long and theoretically unlimited acquisition times. Using this concept, we demonstrate whole-cell, 3D, multi-color and live cell STED microscopy.

    View Publication Page