Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Flylight / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

50 Publications

Showing 21-30 of 50 results
09/16/23 | Driver lines for studying associative learning in Drosophila
Yichun Shuai , Megan Sammons , Gabriella Sterne , Karen Hibbard , He Yang , Ching-Po Yang , Claire Managan , Igor Siwanowicz , Tzumin Lee , Gerald M. Rubin , Glenn Turner , Yoshinori Aso
bioRxiv. 2023 Sep 16:. doi: https://doi.org/10.7554/elife.94168.4

The mushroom body (MB) is the center for associative learning in insects. In Drosophila, intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, many cell types upstream and downstream of the MB remained to be investigated due to lack of driver lines. Here we describe a new collection of over 800 split-GAL4 and split-LexA drivers that cover approximately 300 cell types, including sugar sensory neurons, putative nociceptive ascending neurons, olfactory and thermo-/hygro-sensory projection neurons, interneurons connected with the MB-extrinsic neurons, and various other cell types. We characterized activation phenotypes for a subset of these lines and identified the sugar sensory neuron line most suitable for reward substitution. Leveraging the thousands of confocal microscopy images associated with the collection, we analyzed neuronal morphological stereotypy and discovered that one set of mushroom body output neurons, MBON08/MBON09, exhibits striking individuality and asymmetry across animals. In conjunction with the EM connectome maps, the driver lines reported here offer a powerful resource for functional dissection of neural circuits for associative learning in adult Drosophila.

View Publication Page
12/15/22 | Eye structure shapes neuron function in Drosophila motion vision
Arthur Zhao , Eyal Gruntman , Aljoscha Nern , Nirmala A. Iyer , Edward M. Rogers , Sanna Koskela , Igor Siwanowicz , Marisa Dreher , Miriam A. Flynn , Connor W. Laughland , Henrique D.F. Ludwig , Alex G. Thomson , Cullen P. Moran , Bruck Gezahegn , Davi D. Bock , Michael B. Reiser
bioRxiv. 2022 Dec 15:. doi: 10.1101/2022.12.14.520178

Many animals rely on vision to navigate through their environment. The pattern of changes in the visual scene induced by self-motion is the optic flow1, which is first estimated in local patches by directionally selective (DS) neurons24. But how should the arrays of DS neurons, each responsive to motion in a preferred direction at a specific retinal position, be organized to support robust decoding of optic flow by downstream circuits? Understanding this global organization is challenging because it requires mapping fine, local features of neurons across the animal’s field of view3. In Drosophila, the asymmetric dendrites of the T4 and T5 DS neurons establish their preferred direction, making it possible to predict DS responses from anatomy4,5. Here we report that the preferred directions of fly DS neurons vary at different retinal positions and show that this spatial variation is established by the anatomy of the compound eye. To estimate the preferred directions across the visual field, we reconstructed hundreds of T4 neurons in a full brain EM volume6 and discovered unexpectedly stereotypical dendritic arborizations that are independent of location. We then used whole-head μCT scans to map the viewing directions of all compound eye facets and found a non-uniform sampling of visual space that explains the spatial variation in preferred directions. Our findings show that the organization of preferred directions in the fly is largely determined by the compound eye, exposing an intimate and unexpected connection between the peripheral structure of the eye, functional properties of neurons deep in the brain, and the control of body movements.

View Publication Page
01/24/23 | Hierarchical architecture of dopaminergic circuits enables second-order conditioning in Drosophila
Daichi Yamada , Daniel Bushey , Li Feng , Karen Hibbard , Megan Sammons , Jan Funke , Ashok Litwin-Kumar , Toshihide Hige , Yoshinori Aso
eLife. 2023 Jan 24:. doi: 10.7554/eLife.79042

Dopaminergic neurons with distinct projection patterns and physiological properties compose memory subsystems in a brain. However, it is poorly understood whether or how they interact during complex learning. Here, we identify a feedforward circuit formed between dopamine subsystems and show that it is essential for second-order conditioning, an ethologically important form of higher-order associative learning. The Drosophila mushroom body comprises a series of dopaminergic compartments, each of which exhibits distinct memory dynamics. We find that a slow and stable memory compartment can serve as an effective “teacher” by instructing other faster and transient memory compartments via a single key interneuron, which we identify by connectome analysis and neurotransmitter prediction. This excitatory interneuron acquires enhanced response to reward-predicting odor after first-order conditioning and, upon activation, evokes dopamine release in the “student” compartments. These hierarchical connections between dopamine subsystems explain distinct properties of first- and second-order memory long known by behavioral psychologists.

View Publication Page
04/01/14 | Making Drosophila lineage-restricted drivers via patterned recombination in neuroblasts.
Awasaki T, Kao C, Lee Y, Yang C, Huang Y, Pfeiffer BD, Luan H, Jing X, Huang Y, He Y, Schroeder MD, Kuzin A, Brody T, Zugates CT, Odenwald WF, Lee T
Nature Neuroscience. 2014 Apr;17(4):631-7. doi: 10.1038/nn.3654

The Drosophila cerebrum originates from about 100 neuroblasts per hemisphere, with each neuroblast producing a characteristic set of neurons. Neurons from a neuroblast are often so diverse that many neuron types remain unexplored. We developed new genetic tools that target neuroblasts and their diverse descendants, increasing our ability to study fly brain structure and development. Common enhancer-based drivers label neurons on the basis of terminal identities rather than origins, which provides limited labeling in the heterogeneous neuronal lineages. We successfully converted conventional drivers that are temporarily expressed in neuroblasts, into drivers expressed in all subsequent neuroblast progeny. One technique involves immortalizing GAL4 expression in neuroblasts and their descendants. Another depends on loss of the GAL4 repressor, GAL80, from neuroblasts during early neurogenesis. Furthermore, we expanded the diversity of MARCM-based reagents and established another site-specific mitotic recombination system. Our transgenic tools can be combined to map individual neurons in specific lineages of various genotypes.

View Publication Page
12/18/18 | Mapping Neurotransmitter Identity in the Whole-Mount Brain Using Multiplex High-Throughput Fluorescence Hybridization.
Meissner GW, Nern A, Singer RH, Wong AM, Malkesman O, Long X
Genetics. 2018 Dec 18;211(2):473-82. doi: 10.1534/genetics.118.301749

Identifying the neurotransmitters used by specific neurons is a critical step in understanding the function of neural circuits. However, methods for the consistent and efficient detection of neurotransmitter markers remain limited. Fluorescence hybridization (FISH) enables direct labeling of type-specific mRNA in neurons. Recent advances in FISH allow this technique to be carried out in intact tissue samples such as whole-mount brains. Here, we present a FISH platform for high-throughput detection of eight common neurotransmitter phenotypes in brains. We greatly increase FISH throughput by processing samples mounted on coverslips and optimizing fluorophore choice for each probe to facilitate multiplexing. As application examples, we demonstrate cases of neurotransmitter co-expression, reveal neurotransmitter phenotypes of specific cell types and explore the onset of neurotransmitter expression in the developing optic lobe. Beyond neurotransmitter markers, our protocols can in principle be used for large scale FISH detection of any mRNA in whole-mount fly brains.

View Publication Page
07/13/17 | Mapping the neural substrates of behavior.
Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, Card GM, Korff W, Rubin GM, Simpson JH, Reiser MB, Branson KM
Cell. 2017-07-13;170(2):393-406. doi: 10.1016/j.cell.2017.06.032

Assigning behavioral functions to neural structures has long been a central goal in neuroscience and is a necessary first step toward a circuit-level understanding of how the brain generates behavior. Here, we map the neural substrates of locomotion and social behaviors for Drosophila melanogaster using automated machine-vision and machine-learning techniques. From videos of 400,000 flies, we quantified the behavioral effects of activating 2,204 genetically targeted populations of neurons. We combined a novel quantification of anatomy with our behavioral analysis to create brain-behavior correlation maps, which are shared as browsable web pages and interactive software. Based on these maps, we generated hypotheses of regions of the brain causally related to sensory processing, locomotor control, courtship, aggression, and sleep. Our maps directly specify genetic tools to target these regions, which we used to identify a small population of neurons with a role in the control of walking.

•We developed machine-vision methods to broadly and precisely quantify fly behavior•We measured effects of activating 2,204 genetically targeted neuronal populations•We created whole-brain maps of neural substrates of locomotor and social behaviors•We created resources for exploring our results and enabling further investigation

Machine-vision analyses of large behavior and neuroanatomy data reveal whole-brain maps of regions associated with numerous complex behaviors.

View Publication Page
11/17/20 | Multi-regional circuits underlying visually guided decision-making in Drosophila.
Cheong H, Siwanowicz I, Card GM
Current Opinion in Neurobiology. 2020 Nov 17;65:77-87. doi: 10.1016/j.conb.2020.10.010

Visually guided decision-making requires integration of information from distributed brain areas, necessitating a brain-wide approach to examine its neural mechanisms. New tools in Drosophila melanogaster enable circuits spanning the brain to be charted with single cell-type resolution. Here, we highlight recent advances uncovering the computations and circuits that transform and integrate visual information across the brain to make behavioral choices. Visual information flows from the optic lobes to three primary central brain regions: a sensorimotor mapping area and two 'higher' centers for memory or spatial orientation. Rapid decision-making during predator evasion emerges from the spike timing dynamics in parallel sensorimotor cascades. Goal-directed decisions may occur through memory, navigation and valence processing in the central complex and mushroom bodies.

View Publication Page
02/26/24 | Nested neural circuits generate distinct acoustic signals during Drosophila courtship
Joshua L. Lillvis , Kaiyu Wang , Hiroshi M. Shiozaki , Min Xu , David L. Stern , Barry J. Dickson
Current Biology. 2024 Feb 26;34(4):808-24. doi: 10.1016/j.cub.2024.01.015

Many motor control systems generate multiple movements using a common set of muscles. How are premotor circuits able to flexibly generate diverse movement patterns? Here, we characterize the neuronal circuits that drive the distinct courtship songs of Drosophila melanogaster. Male flies vibrate their wings towards females to produce two different song modes – pulse and sine song – which signal species identity and male quality. Using cell-type specific genetic reagents and the connectome, we provide a cellular and synaptic map of the circuits in the male ventral nerve cord that generate these songs and examine how activating or inhibiting each cell type within these circuits affects the song. Our data reveal that the song circuit is organized into two nested feed-forward pathways, with extensive reciprocal and feed-back connections. The larger network produces pulse song, the more complex and ancestral song form. A subset of this network produces sine song, the simpler and more recent form. Such nested organization may be a common feature of motor control circuits in which evolution has layered increasing flexibility on to a basic movement pattern.

View Publication Page
Card LabBock LabFlyLight
02/28/19 | Neural basis for looming size and velocity encoding in the Drosophila giant fiber escape pathway.
Ache JM, Polsky J, Alghailani S, Parekh R, Breads P, Peek MY, Bock DD, von Reyn CR, Card GM
Current Biology : CB. 2019 Feb 28;29(6):1073. doi: 10.1016/j.cub.2019.01.079

Identified neuron classes in vertebrate cortical [1-4] and subcortical [5-8] areas and invertebrate peripheral [9-11] and central [12-14] brain neuropils encode specific visual features of a panorama. How downstream neurons integrate these features to control vital behaviors, like escape, is unclear [15]. In Drosophila, the timing of a single spike in the giant fiber (GF) descending neuron [16-18] determines whether a fly uses a short or long takeoff when escaping a looming predator [13]. We previously proposed that GF spike timing results from summation of two visual features whose detection is highly conserved across animals [19]: an object's subtended angular size and its angular velocity [5-8, 11, 20, 21]. We attributed velocity encoding to input from lobula columnar type 4 (LC4) visual projection neurons, but the size-encoding source remained unknown. Here, we show that lobula plate/lobula columnar, type 2 (LPLC2) visual projection neurons anatomically specialized to detect looming [22] provide the entire GF size component. We find LPLC2 neurons to be necessary for GF-mediated escape and show that LPLC2 and LC4 synapse directly onto the GF via reconstruction in a fly brain electron microscopy (EM) volume [23]. LPLC2 silencing eliminates the size component of the GF looming response in patch-clamp recordings, leaving only the velocity component. A model summing a linear function of angular velocity (provided by LC4) and a Gaussian function of angular size (provided by LPLC2) replicates GF looming response dynamics and predicts the peak response time. We thus present an identified circuit in which information from looming feature-detecting neurons is combined by a common post-synaptic target to determine behavioral output.

View Publication Page
09/18/23 | Neural circuit mechanisms for transforming learned olfactory valences into wind-oriented movement
Yoshinori Aso , Daichi Yamada , Daniel Bushey , Karen Hibbard , Megan Sammons , Hideo Otsuna , Yichun Shuai , Toshihide Hige
eLife. 2023 Sep 18:. doi: 10.7554/eLife.85756

How memories are used by the brain to guide future action is poorly understood. In olfactory associative learning in Drosophila, multiple compartments of the mushroom body act in parallel to assign valence to a stimulus. Here, we show that appetitive memories stored in different compartments induce different levels of upwind locomotion. Using a photoactivation screen of a new collection of split-GAL4 drivers and EM connectomics, we identified a cluster of neurons postsynaptic to the mushroom body output neurons (MBONs) that can trigger robust upwind steering. These UpWind Neurons (UpWiNs) integrate inhibitory and excitatory synaptic inputs from MBONs of appetitive and aversive memory compartments, respectively. After training, disinhibition from the appetitive-memory MBONs enhances the response of UpWiNs to reward-predicting odors. Blocking UpWiNs impaired appetitive memory and reduced upwind locomotion during retrieval. Photoactivation of UpWiNs also increased the chance of returning to a location where activation was initiated, suggesting an additional role in olfactory navigation. Thus, our results provide insight into how learned abstract valences are gradually transformed into concrete memory-driven actions through divergent and convergent networks, a neuronal architecture that is commonly found in the vertebrate and invertebrate brains.

View Publication Page