Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block

Associated Lab

facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-61yz1V0li8B1bixrCWxdAe2aYiEXdhd0 | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

206 Janelia Publications

Showing 51-60 of 206 results
Your Criteria:
    05/21/18 | Community-based benchmarking improves spike inference from two-photon calcium imaging data.
    Berens P, Freeman J, Deneux T, Chenkov N, McColgan T, Speiser A, Macke JH, Turaga SC, Mineault P, Rupprecht P, Gerhard S, Friedrich RW, Friedrich J, Paninski L, Pachitariu M, Harris KD, Bolte B, Machado TA, Ringach D, etal
    PLoS Computational Biology. 2018 May 21;14(5):e1006157. doi: 10.1371/journal.pcbi.1006157

    In recent years, two-photon calcium imaging has become a standard tool to probe the function of neural circuits and to study computations in neuronal populations. However, the acquired signal is only an indirect measurement of neural activity due to the comparatively slow dynamics of fluorescent calcium indicators. Different algorithms for estimating spike rates from noisy calcium measurements have been proposed in the past, but it is an open question how far performance can be improved. Here, we report the results of the spikefinder challenge, launched to catalyze the development of new spike rate inference algorithms through crowd-sourcing. We present ten of the submitted algorithms which show improved performance compared to previously evaluated methods. Interestingly, the top-performing algorithms are based on a wide range of principles from deep neural networks to generative models, yet provide highly correlated estimates of the neural activity. The competition shows that benchmark challenges can drive algorithmic developments in neuroscience.

    View Publication Page
    03/13/18 | Comprehensive analysis of a cis-regulatory region reveals pleiotropy in enhancer function.
    Preger-Ben Noon E, Sabarís G, Ortiz DM, Sager J, Liebowitz A, Stern DL, Frankel N
    Cell Reports. 2018 Mar 13;22(11):3021-3031. doi: 10.1016/j.celrep.2018.02.073

    Developmental genes can have complex cis-regulatory regions with multiple enhancers. Early work revealed remarkable modularity of enhancers, whereby distinct DNA regions drive gene expression in defined spatiotemporal domains. Nevertheless, a few reports have shown that enhancers function in multiple developmental stages, implying that enhancers can be pleiotropic. Here, we have studied the activity of the enhancers of the shavenbaby gene throughout D. melanogaster development. We found that all seven shavenbaby enhancers drive expression in multiple tissues and developmental stages. We explored how enhancer pleiotropy is encoded in two of these enhancers. In one enhancer, the same transcription factor binding sites contribute to embryonic and pupal expression, revealing site pleiotropy, whereas for a second enhancer, these roles are encoded by distinct sites. Enhancer pleiotropy may be a common feature of cis-regulatory regions of developmental genes, and site pleiotropy may constrain enhancer evolution in some cases.

    View Publication Page
    Spruston LabMenon Lab
    03/22/18 | Continuous variation within cell types of the nervous system.
    Cembrowski MS, Menon V
    Trends in Neurosciences. 2018 Mar 22;41(6):337-48. doi: 10.1016/j.tins.2018.02.010

    The brain is an organ of immense complexity. Next-generation RNA sequencing (RNA-seq) is becoming increasingly popular in the deconstruction of this complexity into distinct classes of 'cell types'. Notably, in addition to revealing the organization of this distinct cell-type landscape, the technology has also begun to illustrate that continuous variation can be found within narrowly defined cell types. Here we summarize the evidence for graded transcriptomic heterogeneity being present, widespread, and functionally relevant in the nervous system. We explain how these graded differences can map onto higher-order organizational features and how they may reframe existing interpretations of higher-order heterogeneity. Ultimately, a multimodal approach incorporating continuously variable cell types will facilitate an accurate reductionist interpretation of the nervous system.

    View Publication Page
    Fetter LabTruman LabCardona Lab
    12/11/18 | Convergence of monosynaptic and polysynaptic sensory paths onto common motor outputs in a feeding connectome.
    Miroschnikow A, Schlegel P, Schoofs A, Hueckesfeld S, Li F, Schneider-Mizell CM, Fetter RD, Truman JW, Cardona A, Pankratz MJ
    eLife. 2018 Dec 11;7:. doi: 10.7554/eLife.40247

    We reconstructed, from a whole CNS EM volume, the synaptic map of input and output neurons that underlie food intake behavior of larvae. Input neurons originate from enteric, pharyngeal and external sensory organs and converge onto seven distinct sensory synaptic compartments within the CNS. Output neurons consist of feeding motor, serotonergic modulatory and neuroendocrine neurons. Monosynaptic connections from a set of sensory synaptic compartments cover the motor, modulatory and neuroendocrine targets in overlapping domains. Polysynaptic routes are superimposed on top of monosynaptic connections, resulting in divergent sensory paths that converge on common outputs. A completely different set of sensory compartments is connected to the mushroom body calyx. The mushroom body output neurons are connected to interneurons that directly target the feeding output neurons. Our results illustrate a circuit architecture in which monosynaptic and multisynaptic connections from sensory inputs traverse onto output neurons via a series of converging paths.

    View Publication Page
    10/05/18 | Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change.
    Nagy O, Nuez I, Savisaar R, Peluffo AE, Yassin A, Lang M, Stern DL, Matute DR, David JR, Courtier-Orgogozo V
    Current Biology : CB. 2018 Oct 05;28(21):3450-7. doi: 10.1016/j.cub.2018.08.047

    Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.

    View Publication Page
    09/21/18 | Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin.
    Hu J, Worrall LJ, Hong C, Vuckovic M, Atkinson CE, Caveney N, Yu Z, Strynadka NC
    Nature Communications. 2018 Sep 21;9(1):3840. doi: 10.1038/s41467-018-06298-8

    The bacterial type III secretion system, or injectisome, is a syringe shaped nanomachine essential for the virulence of many disease causing Gram-negative bacteria. At the core of the injectisome structure is the needle complex, a continuous channel formed by the highly oligomerized inner and outer membrane hollow rings and a polymerized helical needle filament which spans through and projects into the infected host cell. Here we present the near-atomic resolution structure of a needle complex from the prototypical Salmonella Typhimurium SPI-1 type III secretion system, with local masking protocols allowing for model building and refinement of the major membrane spanning components of the needle complex base in addition to an isolated needle filament. This work provides significant insight into injectisome structure and assembly and importantly captures the molecular basis for substrate induced gating in the giant outer membrane secretin portal family.

    View Publication Page
    07/01/18 | Cryo-EM structure of an essential Plasmodium vivax invasion complex.
    Gruszczyk J, Huang RK, Chan L, Menant S, Hong C, Murphy JM, Mok Y, Griffin MD, Pearson RD, Wong W, Cowman AF, Yu Z, Tham W
    Nature. 2018 Jul;559(7712):135-139. doi: 10.1038/s41586-018-0249-1

    Plasmodium vivax is the most widely distributed malaria parasite that infects humans. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P. vivax reticulocyte-binding protein 2b (PvRBP2b) and transferrin receptor 1 (TfR1). TfR1-deficient erythroid cells are refractory to invasion by P. vivax, and anti-PvRBP2b monoclonal antibodies inhibit reticulocyte binding and block P. vivax invasion in field isolates. Here we report a high-resolution cryo-electron microscopy structure of a ternary complex of PvRBP2b bound to human TfR1 and transferrin, at 3.7 Å resolution. Mutational analyses show that PvRBP2b residues involved in complex formation are conserved; this suggests that antigens could be designed that act across P. vivax strains. Functional analyses of TfR1 highlight how P. vivax hijacks TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron. Crystal and solution structures of PvRBP2b in complex with antibody fragments characterize the inhibitory epitopes. Our results establish a structural framework for understanding how P. vivax reticulocyte-binding protein engages its receptor and the molecular mechanism of inhibitory monoclonal antibodies, providing important information for the design of novel vaccine candidates.

    View Publication Page
    07/13/18 | Cryo-EM structure of the polycystin 2-l1 ion channel.
    Hulse RE, Li Z, Huang RK, Zhang J, Clapham DE
    eLife. 2018 Jul 13;7:. doi: 10.7554/eLife.36931

    We report the near atomic resolution (3.3 Å) of the human polycystic kidney disease 2-like 1 (polycystin 2-l1) ion channel. Encoded by PKD2L1, polycystin 2-l1 is a calcium and monovalent cation-permeant ion channel in primary cilia and plasma membranes. The related primary cilium-specific polycystin-2 protein, encoded by PKD2, shares a high degree of sequence similarity, yet has distinct permeability characteristics. Here we show that these differences are reflected in the architecture of polycystin 2-l1.

    View Publication Page
    11/11/18 | Cryo-EM structure of the receptor-activated TRPC5 ion channel at 2.9 angstrom resolution.
    Jingjing Duan , Jian Li , Gui-Lan Chen , Bo Zeng , Kechen Xie , Xiaogang Peng , Wei Zhou , Jianing Zhong , Yixing Zhang , Jie Xu , Changhu Xue , Lan Zhu , Wei Liu , Xiao-Li Tian , Jianbin Wang , David E. Clapham , Zongli Li , Jin Zhang

    The transient receptor potential canonical subfamily member 5 (TRPC5) is a non-selective calcium-permeant cation channel. As a depolarizing channel, its function is studied in the central nervous system and kidney. TRPC5 forms heteromultimers with TRPC1, but also forms homomultimers. It can be activated by reducing agents through reduction of the extracellular disulfide bond. Here we present the 2.9 Å resolution electron cryo-microscopy (cryo-EM) structure of TRPC5. The structure of TRPC5 in its apo state is partially open, which may be related to the weak activation of TRPC5 in response to extracellular pH. We also report the conserved negatively charged residues of the cation binding site located in the hydrophilic pocket between S2 and S3. Comparison of the TRPC5 structure to previously determined structures of other TRPC and TRP channels reveals differences in the extracellular pore domain and in the length of the S3 helix. Together, these results shed light on the structural features that contribute to the specific activation mechanism of the receptor-activated TRPC5.

    View Publication Page
    Gonen Lab
    06/01/18 | Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.
    Lei H, Ma J, Sanchez Martinez S, Gonen T
    Nature Structural & Molecular Biology. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2

    Recent advances in understanding intracellular amino acid transport and mechanistic target of rapamycin complex 1 (mTORC1) signaling shed light on solute carrier 38, family A member 9 (SLC38A9), a lysosomal transporter responsible for the binding and translocation of several essential amino acids. Here we present the first crystal structure of SLC38A9 from Danio rerio in complex with arginine. As captured in the cytosol-open state, the bound arginine was locked in a transitional state stabilized by transmembrane helix 1 (TM1) of drSLC38A9, which was anchored at the groove between TM5 and TM7. These anchoring interactions were mediated by the highly conserved WNTMM motif in TM1, and mutations in this motif abolished arginine transport by drSLC38A9. The underlying mechanism of substrate binding is critical for sensitizing the mTORC1 signaling pathway to amino acids and for maintenance of lysosomal amino acid homeostasis. This study offers a first glimpse into a prototypical model for SLC38 transporters.

    View Publication Page