Main Menu (Mobile)- Block

Main Menu - Block

custom | custom

Search Results

filters_region_cap | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
general_search_page-panel_pane_1 | views_panes

98 Janelia Publications

Showing 61-70 of 98 results
Your Criteria:
    10/12/11 | Perception of sniff phase in mouse olfaction.
    Smear M, Shusterman R, O’Connor R, Bozza T, Rinberg D
    Nature. 2011 Oct 12;14(7373):1039-44. doi: 10.1038/nature10521

    Olfactory systems encode odours by which neurons respond and by when they respond. In mammals, every sniff evokes a precise, odour-specific sequence of activity across olfactory neurons. Likewise, in a variety of neural systems, ranging from sensory periphery to cognitive centres, neuronal activity is timed relative to sampling behaviour and/or internally generated oscillations. As in these neural systems, relative timing of activity may represent information in the olfactory system. However, there is no evidence that mammalian olfactory systems read such cues. To test whether mice perceive the timing of olfactory activation relative to the sniff cycle (’sniff phase’), we used optogenetics in gene-targeted mice to generate spatially constant, temporally controllable olfactory input. Here we show that mice can behaviourally report the sniff phase of optogenetically driven activation of olfactory sensory neurons. Furthermore, mice can discriminate between light-evoked inputs that are shifted in the sniff cycle by as little as 10 milliseconds, which is similar to the temporal precision of olfactory bulb odour responses. Electrophysiological recordings in the olfactory bulb of awake mice show that individual cells encode the timing of photoactivation in relation to the sniff in both the timing and the amplitude of their responses. Our work provides evidence that the mammalian olfactory system can read temporal patterns, and suggests that timing of activity relative to sampling behaviour is a potent cue that may enable accurate olfactory percepts to form quickly.

    View Publication Page
    Cui Lab
    07/04/11 | Phase resolved interferometric spectral modulation (PRISM) for ultrafast pulse measurement and compression.
    Wu T, Tang J, Hajj B, Cui M
    Optics Express. 2011 Jul 4;19(14):12961-8. doi: 10.1364/OE.19.012961

    We show through experiments and simulations that parallel phase modulation, a technique developed in the field of adaptive optics, can be employed to quickly determine the spectral phase profile of ultrafast laser pulses and to perform phase compensation as well as pulse shaping. Different from many existing ultrafast pulse measurement methods, the technique reported here requires no spectrum measurements of nonlinear signals. Instead, the power of nonlinear signals is used directly to quickly measure the spectral phase, a convenient feature for applications such as two-photon fluorescence microscopy. The method is found to work with both smooth and even completely random distortions. The experimental results are verified with MIIPS measurements.

    View Publication Page
    Eddy/Rivas Lab
    12/07/11 | Phosphorylation at the interface.
    Davis FP
    Structure . 2011 Dec 7;19:1726-7. doi: 10.1016/j.str.2011.11.006

    Proteomic studies have identified thousands of eukaryotic phosphorylation sites (phosphosites), but few are functionally characterized. Nishi et al., in this issue of Structure, characterize phosphosites at protein-protein interfaces and estimate the effect of their phosphorylation on interaction affinity, by combining proteomics data with protein structures.

    View Publication Page
    07/17/11 | Precise olfactory responses tile the sniff cycle.
    Shusterman R, Smear MC, Koulakov AA, Rinberg D
    Nature Neuroscience. 2011 Jul 17;14(8):1039-44. doi: 10.1038/nn.2877

    In terrestrial vertebrates, sniffing controls odorant access to receptors, and therefore sets the timescale of olfactory stimuli. We found that odorants evoked precisely sniff-locked activity in mitral/tufted cells in the olfactory bulb of awake mouse. The trial-to-trial response jitter averaged 12 ms, a precision comparable to other sensory systems. Individual cells expressed odor-specific temporal patterns of activity and, across the population, onset times tiled the duration of the sniff cycle. Responses were more tightly time-locked to the sniff phase than to the time after inhalation onset. The spikes of single neurons carried sufficient information to discriminate odors. In addition, precise locking to sniff phase may facilitate ensemble coding by making synchrony relationships across neurons robust to variation in sniff rate. The temporal specificity of mitral/tufted cell output provides a potentially rich source of information for downstream olfactory areas.

    View Publication Page
    01/01/11 | Probing tension and dynamics in actomyosin mediated cell shape change.
    Higgins CD, Tulu US, Gao L, Betzig E, Kiehart DP, Goldstein B
    Molecular Biology of the Cell. 2011;22:
    09/01/11 | Proof-editing is the bottleneck of 3D neuron reconstruction: the problem and solutions.
    Peng H, Long F, Zhao T, Myers E
    Neuroinformatics. 2011 Sep;9:103-5. doi: 10.1007/s12021-010-9090-x
    02/01/11 | Proteome-wide prediction of overlapping small molecule and protein binding sites using structure.
    Davis FP
    Molecular BioSystems. 2011 Feb;7(2):545-57. doi: 10.1039/c0mb00200c

    Small molecules that modulate protein-protein interactions are of great interest for chemical biology and therapeutics. Here I present a structure-based approach to predict ’bi-functional’ sites able to bind both small molecule ligands and proteins, in proteins of unknown structure. First, I develop a homology-based annotation method that transfers binding sites of known three-dimensional structure onto protein sequences, predicting residues in ligand and protein binding sites with estimated true positive rates of 98% and 88%, respectively, at 1% false positive rates. Applying this method to the human proteome predicts 8463 proteins with bi-functional residues and correctly recovers the targets of known interaction modulators. Proteins with significantly (p < 0.01) more bi-functional residues than expected were found to be enriched in regulatory and depleted in metabolism functions. Finally, I demonstrate the utility of the method by describing examples of predicted overlap and evidence of their biological and therapeutic relevance. The results suggest that combining the structures of known binding sites with established fold detection algorithms can predict regions of protein-protein interfaces that are amenable to small molecule modulation. Open-source software and the results for several complete proteomes are available at http://pibase.janelia.org/homolobind.

    View Publication Page
    11/01/11 | Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination.
    Milkie DE, Betzig E, Ji N
    Optics Letters. 2011 Nov 1;36(21):4206-8. doi: 10.1364/OL.36.004206

    Optical aberrations deteriorate the performance of microscopes. Adaptive optics can be used to improve imaging performance via wavefront shaping. Here, we demonstrate a pupil-segmentation based adaptive optical approach with full-pupil illumination. When implemented in a two-photon fluorescence microscope, it recovers diffraction-limited performance and improves imaging signal and resolution.

    View Publication Page
    01/01/11 | Pupil-segmentation-based adaptive optics for microscopy.
    Ji N, Milkie DE, Betzig E
    Proceedings of SPIE. 2011;7931:79310I. doi: 10.1117/12.876398

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

    View Publication Page
    05/01/11 | Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination.
    Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, Betzig E
    Nature Methods. 2011 May;8(5):417-23. doi: 10.1038/nmeth.1586

    A key challenge when imaging living cells is how to noninvasively extract the most spatiotemporal information possible. Unlike popular wide-field and confocal methods, plane-illumination microscopy limits excitation to the information-rich vicinity of the focal plane, providing effective optical sectioning and high speed while minimizing out-of-focus background and premature photobleaching. Here we used scanned Bessel beams in conjunction with structured illumination and/or two-photon excitation to create thinner light sheets (<0.5 μm) better suited to three-dimensional (3D) subcellular imaging. As demonstrated by imaging the dynamics of mitochondria, filopodia, membrane ruffles, intracellular vesicles and mitotic chromosomes in live cells, the microscope currently offers 3D isotropic resolution down to \~{}0.3 μm, speeds up to nearly 200 image planes per second and the ability to noninvasively acquire hundreds of 3D data volumes from single living cells encompassing tens of thousands of image frames.

    View Publication Page