Main Menu (Mobile)- Block

Main Menu - Block

janelia7_blocks-janelia7_fake_breadcrumb | block
Flyem / Publications
custom | custom

Filter

facetapi-Q2b17qCsTdECvJIqZJgYMaGsr8vANl1n | block
facetapi-W9JlIB1X0bjs93n1Alu3wHJQTTgDCBGe | block
facetapi-PV5lg7xuz68EAY8eakJzrcmwtdGEnxR0 | block
facetapi-021SKYQnqXW6ODq5W5dPAFEDBaEJubhN | block
general_search_page-panel_pane_1 | views_panes

56 Publications

Showing 1-10 of 56 results
10/21/25 | Networks of sexually dimorphic neurons that regulate social behaviors in <I>Drosophila</I>
Rubin GM, Managan C, Dreher M, Kim E, Miller S, Boone K, Robie A, Taylor AL, Branson K, Schretter CE, Otopalik AG
bioRxiv. 2025 Oct 21:. doi: 10.1101/2025.10.21.683766

Neural mechanisms underlying sexually dimorphic social behaviors remain enigmatic in most species. In Drosophila, sexually dimorphic P1/pC1x neurons have been described as a site of sensory integration that regulates mating and aggressive behaviors. We show that the male P1/pC1x population forms a highly intertwined network with male-specific mAL and aSP-a neurons that is poised to regulate male behavior. The 48 P1/pC1x cell types exhibit heterogeneous synaptic connections with a subset receiving strong input from identified sensory pathways. We also describe circuit motifs by which P1 and sexually dimorphic aIPg neurons co-regulate social behaviors. Genetic driver lines for these cell types were generated and used to discover distinct roles for P1/pC1x cell types in promoting social acoustic signaling and male-male interactions. Our results reveal unexpected diversity in the connectivity and behavioral roles of the P1/pC1x cell types and provide essential genetic tools for interrogating their neurophysiological and behavioral functions.

View Publication Page
10/09/25 | Sexual dimorphism in the complete connectome of the <I>Drosophila</I> male central nervous system
Berg S, Beckett IR, Costa M, Schlegel P, Januszewski M, Marin EC, Nern A, Preibisch S, Qiu W, Takemura S, Fragniere AM, Champion AS, Adjavon D, Cook M, Gkantia M, Hayworth KJ, Huang GB, Katz WT, Kämpf F, Lu Z, Ordish C, Paterson T, Stürner T, Trautman ET, Whittle CR, Burnett LE, Hoeller J, Li F, Loesche F, Morris BJ, Pietzsch T, Pleijzier MW, Silva V, Yin Y, Ali I, Badalamente G, Bates AS, Bogovic J, Brooks P, Cachero S, Canino BS, Chaisrisawatsuk B, Clements J, Crowe A, de Haan Vicente I, Dempsey G, Donà E, dos Santos M, Dreher M, Dunne CR, Eichler K, Finley-May S, Flynn MA, Hameed I, Hopkins GP, Hubbard PM, Kiassat L, Kovalyak J, Lauchie SA, Leonard M, Lohff A, Longden KD, Maldonado CA, Mitletton M, Moitra I, Moon SS, Mooney C, Munnelly EJ, Okeoma N, Olbris DJ, Pai A, Patel B, Phillips EM, Plaza SM, Richards A, Rivas Salinas J, Roberts RJ, Rogers EM, Scott AL, Scuderi LA, Seenivasan P, Serratosa Capdevila L, Smith C, Svirskas R, Takemura S, Tastekin I, Thomson A, Umayam L, Walsh JJ, Whittome H, Xu CS, Yakal EA, Yang T, Zhao A, George R, Jain V, Jayaraman V, Korff W, Meissner GW, Romani S, Funke J, Knecht C, Saalfeld S, Scheffer LK, Waddell S, Card GM, Ribeiro C, Reiser MB, Hess HF, Rubin GM, Jefferis GS
bioRxiv. 2025 Oct 09:. doi: 10.1101/2025.10.09.680999

Sex differences in behaviour exist across the animal kingdom, typically under strong genetic regulation. In Drosophila, previous work has shown that fruitless and doublesex transcription factors identify neurons driving sexually dimorphic behaviour. However, the organisation of dimorphic neurons into functional circuits remains unclear.We now present the connectome of the entire Drosophila male central nervous system. This contains 166,691 neurons spanning the brain and ventral nerve cord, fully proofread and comprehensively annotated including fruitless and doublesex expression and 11,691 cell types. By comparison with a previous female brain connectome, we provide the first comprehensive description of the differences between male and female brains to synaptic resolution. Of 7,319 cross-matched cell types in the central brain, 114 are dimorphic with an additional 262 male- and 69 female-specific (totalling 4.8% of neurons in males and 2.4% in females).This resource enables analysis of full sensory-to-motor circuits underlying complex behaviours as well as the impact of dimorphic elements. Sex-specific and dimorphic neurons are concentrated in higher brain centres while the sensory and motor periphery are largely isomorphic. Within higher centres, male-specific connections are organised into hotspots defined by male-specific neurons or the presence of male-specific arbours on neurons that are otherwise similar between sexes. Numerous circuit switches reroute sensory information to form conserved, antagonistic circuits controlling opposing behaviours.

View Publication Page
07/21/25 | Transforming descending input into motor output: An analysis of the <I>Drosophila</I> Male Adult Nerve Cord connectome
Cheong HS, Eichler K, Stürner T, Asinof SK, Champion AS, Marin EC, Oram TB, Sumathipala M, Venkatasubramanian L, Namiki S, Siwanowicz I, Costa M, Berg S, Jefferis GS, Card GM
eLife. 2025 Jul 21:. doi: 10.7554/elife.96084.2

In most animals, a relatively small number of descending neurons (DNs) connect higher brain centers in the animal’s head to circuits and motor neurons (MNs) in the nerve cord of the animal’s body that effect movement of the limbs. To understand how brain signals generate behavior, it is critical to understand how these descending pathways are organized onto the body MNs. In the fly, Drosophila melanogaster, MNs controlling muscles in the leg, wing, and other motor systems reside in a ventral nerve cord (VNC), analogous to the mammalian spinal cord. In companion papers, we introduced a densely-reconstructed connectome of the Drosophila Male Adult Nerve Cord (MANC, (Takemura et al., 2024)), including cell type and developmental lineage annotation (Marin et al., 2024), which provides complete VNC connectivity at synaptic resolution. Here, we present a first look at the organization of the VNC networks connecting DNs to MNs based on this new connectome information. We proofread and curated all DNs and MNs to ensure accuracy and reliability, then systematically matched DN axon terminals and MN dendrites with light microscopy data to link their VNC morphology with their brain inputs or muscle targets. We report both broad organizational patterns of the entire network and fine-scale analysis of selected circuits of interest. We discover that direct DN-MN connections are infrequent and identify communities of intrinsic neurons linked to control of different motor systems, including putative ventral circuits for walking, dorsal circuits for flight steering and power generation, and intermediate circuits in the lower tectulum for coordinated action of wings and legs. Our analysis generates hypotheses for future functional experiments and, together with the MANC connectome, empowers others to investigate these and other circuits of the Drosophila ventral nerve cord in richer mechanistic detail.

View Publication Page
03/26/25 | Connectome-driven neural inventory of a complete visual system
Aljoscha Nern , Frank Loesche , Shin-ya Takemura , Laura E Burnett , Marisa Dreher , Eyal Gruntman , Judith Hoeller , Gary B Huang , Michal Januszewski , Nathan C Klapoetke , Sanna Koskela , Kit D Longden , Zhiyuan Lu , Stephan Preibisch , Wei Qiu , Edward M Rogers , Pavithraa Seenivasan , Arthur Zhao , John Bogovic , Brandon S Canino , Jody Clements , Michael Cook , Samantha Finley-May , Miriam A Flynn , Imran Hameed , Kenneth J Hayworth , Gary Patrick Hopkins , Philip M Hubbard , William T Katz , Julie Kovalyak , Shirley A Lauchie , Meghan Leonard , Alanna Lohff , Charli A Maldonado , Caroline Mooney , Nneoma Okeoma , Donald J Olbris , Christopher Ordish , Tyler Paterson , Emily M Phillips , Tobias Pietzsch , Jennifer Rivas Salinas , Patricia K Rivlin , Ashley L Scott , Louis A Scuderi , Satoko Takemura , Iris Talebi , Alexander Thomson , Eric T Trautman , Lowell Umayam , Claire Walsh , John J Walsh , C Shan Xu , Emily A Yakal , Tansy Yang , Ting Zhao , Jan Funke , Reed George , Harald F Hess , Gregory S X E Jefferis , Christopher Knecht , Wyatt Korff , Stephen M Plaza , Sandro Romani , Stephan Saalfeld , Louis K Scheffer , Stuart Berg , Gerald M Rubin , Michael B Reiser
Nature. 2025 Mar 26:. doi: 10.1038/s41586-025-08746-0

Vision provides animals with detailed information about their surroundings, conveying diverse features such as color, form, and movement across the visual scene. Computing these parallel spatial features requires a large and diverse network of neurons, such that in animals as distant as flies and humans, visual regions comprise half the brain’s volume. These visual brain regions often reveal remarkable structure-function relationships, with neurons organized along spatial maps with shapes that directly relate to their roles in visual processing. To unravel the stunning diversity of a complex visual system, a careful mapping of the neural architecture matched to tools for targeted exploration of that circuitry is essential. Here, we report a new connectome of the right optic lobe from a male Drosophila central nervous system FIB-SEM volume and a comprehensive inventory of the fly’s visual neurons. We developed a computational framework to quantify the anatomy of visual neurons, establishing a basis for interpreting how their shapes relate to spatial vision. By integrating this analysis with connectivity information, neurotransmitter identity, and expert curation, we classified the 53,000 neurons into 727 types, about half of which are systematically described and named for the first time. Finally, we share an extensive collection of split-GAL4 lines matched to our neuron type catalog. Together, this comprehensive set of tools and data unlock new possibilities for systematic investigations of vision in Drosophila, a foundation for a deeper understanding of sensory processing.

 

View Publication Page
01/06/25 | A split-GAL4 driver line resource for Drosophila neuron types
Meissner GW, Vannan A, Jeter J, Close K, Depasquale GM, Dorman Z, Forster K, Beringer JA, Gibney TV, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer N, Lazarus R, Lee K, Li H, Liaw H, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao J, Laverty T, Mercer M, Perez B, Pitts S, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HS, Dolan M, Ehrhardt E, Feng K, El Galfi B, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, minegishi r, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM
05/16/24 | Hue selectivity from recurrent circuitry in Drosophila
Christenson MP, Sanz Diez A, Heath SL, Saavedra-Weisenhaus M, Adachi A, Nern A, Abbott LF, Behnia R
Nat Neurosci. 2024 May 16:. doi: 10.1038/s41593-024-01640-4

In the perception of color, wavelengths of light reflected off objects are transformed into the derived quantities of brightness, saturation and hue. Neurons responding selectively to hue have been reported in primate cortex, but it is unknown how their narrow tuning in color space is produced by upstream circuit mechanisms. We report the discovery of neurons in the Drosophila optic lobe with hue-selective properties, which enables circuit-level analysis of color processing. From our analysis of an electron microscopy volume of a whole Drosophila brain, we construct a connectomics-constrained circuit model that accounts for this hue selectivity. Our model predicts that recurrent connections in the circuit are critical for generating hue selectivity. Experiments using genetic manipulations to perturb recurrence in adult flies confirm this prediction. Our findings reveal a circuit basis for hue selectivity in color vision.

View Publication Page
04/25/24 | Connectomic Analysis of Mitochondria in the Central Brain of Drosophila
Patricia K Rivlin , Michal Januszewski , Kit D Longden , Erika Neace , Louis K Scheffer , Christopher Ordish , Jody Clements , Elliott Phillips , Natalie Smith , Satoko Takemura , Lowell Umayam , Claire Walsh , Emily A Yakal , Stephen M Plaza , Stuart Berg
bioRxiv. 2024 Apr 25:. doi: 10.1101/2024.04.21.590464

Mitochondria are an integral part of the metabolism of a neuron. EM images of fly brain volumes, taken for connectomics, contain mitochondria as well as the cells and synapses that have already been reported. Here, from the Drosophila hemibrain dataset, we extract, classify, and measure approximately 6 million mitochondria among roughly 21 thousand neurons of more than 5500 cell types. Each mitochondrion is classified by its appearance - dark and dense, light and sparse, or intermediate - and the location, orientation, and size (in voxels) are annotated. These mitochondria are added to our publicly available data portal, and each synapse is linked to its closest mitochondrion. Using this data, we show quantitative evidence that mitochodrial trafficing extends to the smallest dimensions in neurons. The most basic characteristics of mitochondria - volume, distance from synapses, and color - vary considerably between cell types, and between neurons with different neurotransmitters. We find that polyadic synapses with more post-synaptic densities (PSDs) have closer and larger mitochondria on the pre-synaptic side, but smaller and more distant mitochondria on the PSD side. We note that this relationship breaks down for synapses with only one PSD, suggesting a different role for such synapses.Competing Interest StatementThe authors have declared no competing interest.

View Publication Page
03/15/24 | NeuronBridge: an intuitive web application for neuronal morphology search across large data sets
Jody Clements , Cristian Goina , Philip M. Hubbard , Takashi Kawase , Donald J. Olbris , Hideo Otsuna , Robert Svirskas , Konrad Rokicki
BMC Bioinformatics. 2024 Mar 15;25:114. doi: 10.1186/s12859-024-05732-7

Background

Neuroscience research in Drosophila is benefiting from large-scale connectomics efforts using electron microscopy (EM) to reveal all the neurons in a brain and their connections. To exploit this knowledge base, researchers relate a connectome’s structure to neuronal function, often by studying individual neuron cell types. Vast libraries of fly driver lines expressing fluorescent reporter genes in sets of neurons have been created and imaged using confocal light microscopy (LM), enabling the targeting of neurons for experimentation. However, creating a fly line for driving gene expression within a single neuron found in an EM connectome remains a challenge, as it typically requires identifying a pair of driver lines where only the neuron of interest is expressed in both. This task and other emerging scientific workflows require finding similar neurons across large data sets imaged using different modalities.

Results

Here, we present NeuronBridge, a web application for easily and rapidly finding putative morphological matches between large data sets of neurons imaged using different modalities. We describe the functionality and construction of the NeuronBridge service, including its user-friendly graphical user interface (GUI), extensible data model, serverless cloud architecture, and massively parallel image search engine.

Conclusions

NeuronBridge fills a critical gap in the Drosophila research workflow and is used by hundreds of neuroscience researchers around the world. We offer our software code, open APIs, and processed data sets for integration and reuse, and provide the application as a service at http://neuronbridge.janelia.org.

View Publication Page
02/26/24 | Nested neural circuits generate distinct acoustic signals during Drosophila courtship
Joshua L. Lillvis , Kaiyu Wang , Hiroshi M. Shiozaki , Min Xu , David L. Stern , Barry J. Dickson
Current Biology. 2024 Feb 26;34(4):808-24. doi: 10.1016/j.cub.2024.01.015

Many motor control systems generate multiple movements using a common set of muscles. How are premotor circuits able to flexibly generate diverse movement patterns? Here, we characterize the neuronal circuits that drive the distinct courtship songs of Drosophila melanogaster. Male flies vibrate their wings towards females to produce two different song modes – pulse and sine song – which signal species identity and male quality. Using cell-type specific genetic reagents and the connectome, we provide a cellular and synaptic map of the circuits in the male ventral nerve cord that generate these songs and examine how activating or inhibiting each cell type within these circuits affects the song. Our data reveal that the song circuit is organized into two nested feed-forward pathways, with extensive reciprocal and feed-back connections. The larger network produces pulse song, the more complex and ancestral song form. A subset of this network produces sine song, the simpler and more recent form. Such nested organization may be a common feature of motor control circuits in which evolution has layered increasing flexibility on to a basic movement pattern.

View Publication Page
10/02/24 | Neuronal wiring diagram of an adult brain.
Dorkenwald S, Matsliah A, Sterling AR, Schlegel P, Yu S, McKellar CE, Lin A, Costa M, Eichler K, Yin Y, Silversmith W, Schneider-Mizell C, Jordan CS, Brittain D, Halageri A, Kuehner K, Ogedengbe O, Morey R, Gager J, Kruk K, Perlman E, Yang R, Deutsch D, Bland D, Sorek M, Lu R, Macrina T, Lee K, Bae JA, Mu S, Nehoran B, Mitchell E, Popovych S, Wu J, Jia Z, Castro M, Kemnitz N, Ih D, Bates AS, Eckstein N, Funke J, Collman F, Bock DD, Jefferis GS, Seung HS, Murthy M, FlyWire Consortium
Nature. 2024 Oct 02;634(8032):124-138. doi: 10.1038/s41586-024-07558-y

Connections between neurons can be mapped by acquiring and analysing electron microscopic brain images. In recent years, this approach has been applied to chunks of brains to reconstruct local connectivity maps that are highly informative, but nevertheless inadequate for understanding brain function more globally. Here we present a neuronal wiring diagram of a whole brain containing 5 × 107 chemical synapses between 139,255 neurons reconstructed from an adult female Drosophila melanogaster. The resource also incorporates annotations of cell classes and types, nerves, hemilineages and predictions of neurotransmitter identities. Data products are available for download, programmatic access and interactive browsing and have been made interoperable with other fly data resources. We derive a projectome-a map of projections between regions-from the connectome and report on tracing of synaptic pathways and the analysis of information flow from inputs (sensory and ascending neurons) to outputs (motor, endocrine and descending neurons) across both hemispheres and between the central brain and the optic lobes. Tracing from a subset of photoreceptors to descending motor pathways illustrates how structure can uncover putative circuit mechanisms underlying sensorimotor behaviours. The technologies and open ecosystem reported here set the stage for future large-scale connectome projects in other species.

View Publication Page